Skip to main content

Polymer Membrane in Textile Wastewater

  • Chapter
  • First Online:
Polymer Technology in Dye-containing Wastewater

Abstract

The innovations of technologies for production of clean water and elimination of hazardous pollutants and pollutants from wastewater and water are necessitated by the scarcity of clean water coupled with the environmental influence of industrial and municipal wastewater. Traditional technologies, for the most part, appear to be inadequate for treating effluents properly. Polymer-based technology has gained popularity in recent years. The fundamentals of membrane generation for polymeric membranes are primarily described in this chapter. A number of polymer materials are appropriate to manufacture different types of membranes, which has been presented after a concise introduction and key background knowledge for several membrane-based technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CA:

Cellulose acetate

CMC:

Critical micelle concentration

COD:

Chemical Oxygen Demand

DMF:

Dimethylformamide

IP:

Interfacial polymerization

MEUF:

Micellar-enhanced ultrafiltration

NF:

Nanofiltration

PA:

Polyamide

PC:

Polycarbonate

PE:

Polyethylene

PET:

Polyethylene naphthalate

PP:

Polypropylene

PS:

Polystyrene

PTFE:

Polytetrafluoroethylene

RO:

Reverse osmosis

TDS:

Total dissolved solids

TFC:

Thin-film composite

THF:

Tetrahydrofuran

TMC:

Trimesoyl chloride

UF:

Ultrafiltration

VOCs:

Volatile organic compounds

References

  1. Petersen L, Heynen M, Pellicciotti F (2016) Freshwater resources: past, present, future. In: International encyclopedia of geography: people, the earth, environment and technology, pp 1–12

    Google Scholar 

  2. Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168(2–3):806–812

    Article  CAS  Google Scholar 

  3. Liu C, Guo Y, Wei X, Wang C, Qu M, Schubert DW, Zhang C (2020) An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment. Chem Eng J 384:123306

    Google Scholar 

  4. Lau WJ, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 245(1–3):321–348

    Google Scholar 

  5. Marcucci M, Ciabatti I, Matteucci A, Vernaglione G (2003) Membrane technologies applied to textile wastewater treatment. Ann NY Acad Sci 984:53–64

    Article  CAS  Google Scholar 

  6. Soyekwo F, Liu C, Wen H, Hu Y (2020) Construction of an electroneutral zinc incorporated polymer network nanocomposite membrane with enhanced selectivity for salt/dye separation. Chem Eng J 380:122560

    Google Scholar 

  7. Cecille L, Toussaint JC (1989) Future industrial prospects of membrane processes

    Google Scholar 

  8. Quist-Jensen CA, Macedonio F, Drioli E (2015) Membrane technology for water production in agriculture: desalination and wastewater reuse. Desalination 364:17–32

    Article  CAS  Google Scholar 

  9. Stoquart C, Servais P, Bérubé PR, Barbeau B (2012) Hybrid membrane processes using activated carbon treatment for drinking water: a review. J Membr Sci 411:1–12

    Article  CAS  Google Scholar 

  10. Ravanchi MT, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235(1–3):199–244

    Article  CAS  Google Scholar 

  11. Fane AT, Wang R, Jia Y (2011) Membrane technology: past, present and future. In: Membrane and desalination technologies. Humana Press, Totowa, NJ, pp 1–45

    Google Scholar 

  12. Obotey Ezugbe E, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10(5):89

    Article  CAS  Google Scholar 

  13. Aliyu UM, Rathilal S, Isa YM (2018) Membrane desalination technologies in water treatment: a review. Water Practice Technol 13(4):738–752

    Article  Google Scholar 

  14. Kayvani Fard A, McKay G, Buekenhoudt A, Al Sulaiti H, Motmans F, Khraisheh M, Atieh M (2018) Inorganic membranes: preparation and application for water treatment and desalination. Materials 11(1):74

    Article  CAS  Google Scholar 

  15. Hilal N, Al-Zoubi H, Darwish NA, Mohamma AW, Arabi MA (2004) A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170(3):281–308

    Article  CAS  Google Scholar 

  16. Akbari A, Remigy JC, Aptel P (2002) Treatment of textile dye effluent using a polyamide-based nanofiltration membrane. Chem Eng Process 41(7):601–609

    Article  CAS  Google Scholar 

  17. Marcucci M, Ciardelli G, Matteucci A, Ranieri L, Russo M (2002) Experimental campaigns on textile wastewater for reuse by means of different membrane processes. Desalination 149(1–3):137–143

    Article  CAS  Google Scholar 

  18. Garg N, Garg A, Mukherji S (2020) Eco-friendly decolorization and degradation of reactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha. J Environ Manage 263:110383

    Google Scholar 

  19. Bener S, Bulca Ö, Palas B, Tekin G, Atalay S, Ersöz G (2019) Electrocoagulation process for the treatment of real textile wastewater: effect of operative conditions on the organic carbon removal and kinetic study. Process Saf Environ Prot 129:47–54

    Article  CAS  Google Scholar 

  20. Fazal T, Razzaq A, Javed F, Hafeez A, Rashid N, Amjad US, Rehman MSU, Faisal A, Rehman F (2020) Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. J Hazard Mater 390:121623

    Google Scholar 

  21. Cai H, Liang J, Ning XA, Lai X, Li Y (2020) Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. J Environ Sci 91:199–208

    Article  Google Scholar 

  22. Ellouze E, Tahri N, Amar RB (2012) Enhancement of textile wastewater treatment process using nanofiltration. Desalination 286:16–23

    Article  CAS  Google Scholar 

  23. Li K, Liu Q, Fang F, Wu X, Xin J, Sun S, Wei Y, Ruan R, Chen P, Wang Y, Addy M (2020) Influence of nanofiltration concentrate recirculation on performance and economic feasibility of a pilot-scale membrane bioreactor-nanofiltration hybrid process for textile wastewater treatment with high water recovery. J Clean Prod 261:121067

    Google Scholar 

  24. Jegatheesan V, Pramanik BK, Chen J, Navaratna D, Chang CY, Shu L (2016) Treatment of textile wastewater with membrane bioreactor: a critical review. Biores Technol 204:202–212

    Article  CAS  Google Scholar 

  25. Kumar A, Sharma G, Naushad M, Ala'a H, Garcia-Penas A, Mola GT, Si G, Stadler FJ (2020) Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review. Chem Eng J 382:122937

    Google Scholar 

  26. Rosa JM, Tambourgi EB, Vanalle RM, Gamarra FMC, Santana JCC, Araújo MC (2020) Application of continuous H2O2/UV advanced oxidative process as an option to reduce the consumption of inputs, costs and environmental impacts of textile effluents. J Clean Prod 246:119012

    Google Scholar 

  27. Chandanshive V, Kadam S, Rane N, Jeon BH, Jadhav J, Govindwar S (2020) In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere 252:126513

    Google Scholar 

  28. Hussain Z, Arslan M, Shabir G, Malik MH, Mohsin M, Iqbal S, Afzal M (2019) Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: a comparison at pilot scale. Sci Total Environ 685:370–379

    Article  CAS  Google Scholar 

  29. Maksoud MA, Elgarahy AM, Farrell C, Ala’a H, Rooney DW, Osman AI (2020) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 403:213096

    Google Scholar 

  30. Hubadillah SK, Othman MHD, Tai ZS, Jamalludin MR, Yusuf NK, Ahmad A, Harun Z (2020) Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment. Chem Eng J 379:122396

    Google Scholar 

  31. Sun Y, Cheng S, Lin Z, Yang J, Li C, Gu R (2020) Combination of plasma oxidation process with microbial fuel cell for mineralizing methylene blue with high energy efficiency. J Hazard Mater 384:121307

    Google Scholar 

  32. Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI, Bes-Pia A, Mendoza-Roca JA, Iborra-Clar A (2006) Study of the UF process as pretreatment of NF membranes for textile wastewater reuse. Desalination 200(1–3):745–747

    Article  CAS  Google Scholar 

  33. Suksaroj C, Heran M, Allegre C, Persin F (2005) Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse. Desalination 178(1–3):333–341

    Article  CAS  Google Scholar 

  34. Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol Int Res Process Environ AND Clean Technol 72(4):289–302

    CAS  Google Scholar 

  35. Gatewood BM (1996) Evaluation of aftertreatments for reusing reactive dyes. Textile Chemist and Colorist 28(1):38–42

    Google Scholar 

  36. Srivastva SR (1979). Recent processes of textile bleaching. Dyeing Finishing Small Business, Delhi

    Google Scholar 

  37. O’Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W (1999) Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 74(11):1009–1018

    Google Scholar 

  38. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697

    Article  CAS  Google Scholar 

  39. Khan NA, Bhadra BN, Jhung SH (2018) Heteropoly acid-loaded ionic liquid@ metal-organic frameworks: effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chem Eng J 334:2215–2221

    Article  CAS  Google Scholar 

  40. Gupta VK (2009) Application of low-cost adsorbents for dye removal–a review. J Environ Manage 90(8):2313–2342

    Article  CAS  Google Scholar 

  41. Kumar R, Rashid J, Barakat MA (2014) Synthesis and characterization of a starch–AlOOH–FeS 2 nanocomposite for the adsorption of Congo red dye from aqueous solution. RSC Adv 4(72):38334–38340

    Article  CAS  Google Scholar 

  42. Kyzas GZ, Lazaridis NK, Mitropoulos AC (2012) Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach. Chem Eng J 189:148–159

    Article  CAS  Google Scholar 

  43. Boer JH (1970) Physical and chemical aspects of adsorbents and catalysts: dedicated to JH de Boer on the occasion of his retirement from the technological university, Delft. Academic Press, The Netherlands

    Google Scholar 

  44. Tien C (1994) Adsorption calculations and modeling. Butterworth-Heinemann

    Google Scholar 

  45. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77(3):247–255

    Article  CAS  Google Scholar 

  46. Ballav N, Das R, Giri S, Muliwa AM, Pillay K, Maity A (2018) L-cysteine doped polypyrrole (PPy@ L-Cyst): a super adsorbent for the rapid removal of Hg+2 and efficient catalytic activity of the spent adsorbent for reuse. Chem Eng J 345:621–630

    Article  CAS  Google Scholar 

  47. Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 154(1–3):337–346

    Article  CAS  Google Scholar 

  48. Sivaraj R, Namasivayam C, Kadirvelu K (2001) Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Manage 21(1):105–110

    Article  CAS  Google Scholar 

  49. Greluk M, Hubicki Z (2013) Evaluation of polystyrene anion exchange resin for removal of reactive dyes from aqueous solutions. Chem Eng Res Des 91(7):1343–1351

    Article  CAS  Google Scholar 

  50. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5(39):30801–30818

    Article  CAS  Google Scholar 

  51. Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263(1–2):1–29

    Article  CAS  Google Scholar 

  52. Marin NM, Pascu LF, Demba A, Nita-Lazar M, Badea IA, Aboul-Enein HY (2019) Removal of the acid orange 10 by ion exchange and microbiological methods. Int J Environ Sci Technol 16(10):6357–6366

    Article  CAS  Google Scholar 

  53. Samsami S, Mohamadi M, Sarrafzadeh MH, Rene ER, Firoozbahr M (2020) Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. In: Process safety and environmental protection

    Google Scholar 

  54. Giorno L, Mazzei R, Drioli E (2009) Biochemical membrane reactors in industrial processes. In: Membrane operations: innovative separations and transformations, pp 397–409

    Google Scholar 

  55. Mulder M, Winterton J (1991). Chapter 1: introduction. In: Basic principle of membrane technology. Kluwer Academic Publisher, Dordrecht/Boston/London, pp 1–15

    Google Scholar 

  56. Marchese J, Ponce M, Ochoa NA, Prádanos P, Palacio L, Hernández A (2003) Fouling behaviour of polyethersulfone UF membranes made with different PVP. J Membr Sci 211(1):1–11

    Article  CAS  Google Scholar 

  57. Chuang WY, Young TH, Chiu WY, Lin CY (2000) The effect of polymeric additives on the structure and permeability of poly (vinyl alcohol) asymmetric membranes. Polymer 41(15):5633–5641

    Article  CAS  Google Scholar 

  58. Loeb S, Sourirajan S (1960) Sea-water demineralization by means of a semipermeable membrane: UCLA water resources center report WRCC-34. Los Angeles, CA

    Google Scholar 

  59. Strathmann H, Kock K, Amar P, Baker RW (1975) The formation mechanism of asymmetric membranes. Desalination 16(2):179–203

    Article  CAS  Google Scholar 

  60. Kang YS, Kim UY (1993) Asymmetric membrane formation via immersion precipitation method: II. A membrane formation scheme. Korea Polymer Journal 9:9–15

    Google Scholar 

  61. Zheng QZ, Wang P, Yang YN (2006) Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process. J Membr Sci 279(1–2):230–237

    Article  CAS  Google Scholar 

  62. Pai CL, Boyce MC, Rutledge GC (2009) Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules 42(6):2102–2114

    Article  CAS  Google Scholar 

  63. Lin J, Ding B, Yu J (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2(2):521–528

    Article  CAS  Google Scholar 

  64. Tabatabaei SH, Carreau PJ, Ajji A (2008) Microporous membranes obtained from polypropylene blend films by stretching. J Membr Sci 325(2):772–782

    Article  CAS  Google Scholar 

  65. Kim J, Kim SS, Park M, Jang M (2008) Effects of precursor properties on the preparation of polyethylene hollow fiber membranes by stretching. J Membr Sci 318(1–2):201–209

    Article  CAS  Google Scholar 

  66. Fleischer RL, Price PB, Walker RM, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of California Press

    Google Scholar 

  67. Komaki Y, Tsujimura S (1976) Growth of fine holes in polyethylenenaphthalate film irradiated by fission fragments. J Appl Phys 47(4):1355–1358

    Article  CAS  Google Scholar 

  68. Komaki Y, Ishikawa N, Sakurai T (1995) Effects of gamma rays on etching of heavy ion tracks in polyimide. Radiat Meas 24(2):193–196

    Article  CAS  Google Scholar 

  69. Starosta W, Wawszczak D, Sartowska B, Buczkowski M (1999) Investigations of heavy ion tracks in polyethylene naphthalate films. Radiat Meas 31(1–6):149–152

    Article  CAS  Google Scholar 

  70. Shirkova VV, Tretyakova SP (1997) Physical and chemical basis for the manufacturing of fluoropolymer track membranes. Radiat Meas 28(1–6):791–798

    Article  CAS  Google Scholar 

  71. Cadotte JE, Petersen RJ, Larson RE, Erickson EE (1980) A new thin-film composite seawater reverse osmosis membrane. Desalination 32:25–31

    Article  Google Scholar 

  72. Cadotte J, Forester R, Kim M, Petersen R, Stocker T (1988) Nanofiltration membranes broaden the use of membrane separation technology. Desalination 70(1–3):77–88

    Article  CAS  Google Scholar 

  73. Lau WJ, Ismail AF, Misdan N, Kassim MA (2012) A recent progress in thin film composite membrane: a review. Desalination 287:190–199

    Article  CAS  Google Scholar 

  74. Li L, Zhang S, Zhang X, Zheng G (2007) Polyamide thin film composite membranes prepared from 3,4′,5-biphenyl triacyl chloride, 3,3′,5,5′-biphenyl tetraacyl chloride and m-phenylenediamine. J Membr Sci 289(1–2):258–267

    Article  CAS  Google Scholar 

  75. Zheng Y, Yao G, Cheng Q, Yu S, Liu M, Gao C (2013) Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination 328:42–50

    Article  CAS  Google Scholar 

  76. Rambabu K, Bharath G, Monash P, Velu S, Banat F, Naushad M, Arthanareeswaran G, Show PL (2019) Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane. Process Saf Environ Prot 124:266–278

    Article  CAS  Google Scholar 

  77. Cheryan M (1998) Ultrafiltration and microfiltration handbook. CRC Press

    Book  Google Scholar 

  78. Ulbricht M (2006) Advanced functional polymer membranes. Poly 47(7): 2217–2262

    Google Scholar 

  79. Zaghbani N, Hafiane A, Dhahbi M (2007) Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Sep Purif Technol 55(1):117–124

    Article  CAS  Google Scholar 

  80. Garud RM, Kore SV, Kore VS, Kulkarni GS (2011) A short review on process and applications of reverse osmosis. Univ J Environ Res Technol 1(3)

    Google Scholar 

  81. Ciardelli G, Corsi L, Marcucci M (2001) Membrane separation for wastewater reuse in the textile industry. Resour Conserv Recycl 31(2):189–197

    Article  Google Scholar 

  82. Lin J, Tang CY, Ye W, Sun SP, Hamdan SH, Volodin A, Van Haesendonck C, Sotto A, Luis P, Van der Bruggen B (2015) Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment. J Membr Sci 493:690–702

    Article  CAS  Google Scholar 

  83. Gao J, Thong Z, Wang KY, Chung TS (2017) Fabrication of loose inner-selective polyethersulfone (PES) hollow fibers by one-step spinning process for nanofiltration (NF) of textile dyes. J Membr Sci 541:413–424

    Article  CAS  Google Scholar 

  84. Amini M, Arami M, Mahmoodi NM, Akbari A (2011) Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination 267(1):107–113

    Article  CAS  Google Scholar 

  85. Kurt E, Koseoglu-Imer DY, Dizge N, Chellam S, Koyuncu I (2012) Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater. Desalination 302:24–32

    Article  CAS  Google Scholar 

  86. Gunawan FM, Mangindaan D, Khoiruddin K, Wenten IG (2019) Nanofiltration membrane cross-linked by m-phenylenediamine for dye removal from textile wastewater. Polym Adv Technol 30(2):360–367

    Article  CAS  Google Scholar 

  87. Sutedja A, Josephine CA, Mangindaan D (2017) Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater. IOP Conf Ser Earth Environ Sci 109(1):012042

    Google Scholar 

  88. Karisma D, Febrianto G, Mangindaan D (2017) Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane. IOP Conf Ser Earth Environ Sci 109(1):012012

    Google Scholar 

  89. Chen G, Chai X, Po-Lock Y, Mi Y (1997) Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation. J Membr Sci 127(1):93–99

    Article  CAS  Google Scholar 

  90. Lopes CN, Petrus JCC, Riella HG (2005) Color and COD retention by nanofiltration membranes. Desalination 172(1):77–83

    Article  CAS  Google Scholar 

  91. Bes-Piá A, Iborra-Clar MI, Iborra-Clar A, Mendoza-Roca JA, Cuartas-Uribe B, Alcaina-Miranda MI (2005) Nanofiltration of textile industry wastewater using a physicochemical process as a pre-treatment. Desalination 178(1–3):343–349

    Article  CAS  Google Scholar 

  92. Marcucci M, Nosenzo G, Capannelli G, Ciabatti I, Corrieri D, Ciardelli G (2001) Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138(1–3):75–82

    Article  CAS  Google Scholar 

  93. Van der Bruggen B, Cornelis G, Vandecasteele C, Devreese I (2005) Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination 175(1):111–119

    Article  CAS  Google Scholar 

  94. Van der Bruggen B, Daems B, Wilms D, Vandecasteele C (2001) Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry. Sep Purif Technol 22:519–528

    Article  Google Scholar 

  95. Tang C, Chen V (2002) Nanofiltration of textile wastewater for water reuse. Desalination 143(1):11–20

    Article  CAS  Google Scholar 

  96. Ghaemi N, Madaeni SS, Daraei P, Rajabi H, Zinadini S, Alizadeh A, Ghouzivand S (2015) Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem Eng J 263:101–112

    Article  CAS  Google Scholar 

  97. Shahkaramipour N, Ramanan SN, Fister D, Park E, Venna SR, Sun H, Lin H (2017) Facile grafting of zwitterions onto the membrane surface to enhance antifouling properties for wastewater reuse. Ind Eng Chem Res 56(32):9202–9212

    Article  CAS  Google Scholar 

  98. Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J, Wu R, Huang Y (2011) Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydrate Polymers 83(2):743–748; Bodalo A, Gomez JL, Gomez E, Leon G, Tejera M (2005) Ammonium removal from aqueous solutions by reverse osmosis using cellulose acetate membranes. Desalination 184(1–3):149–155

    Google Scholar 

  99. Bodalo A, Gomez JL, Gomez E, Leon G, Tejera M (2005) Ammonium removal from aqueous solutions by reverse osmosis using cellulose acetate membranes. Desalination 184(1–3):149–155

    Google Scholar 

  100. Du JR, Peldszus S, Huck PM, Feng X (2009) Modification of poly (vinylidene fluoride) ultrafiltration membranes with poly (vinyl alcohol) for fouling control in drinking water treatment. Water Res 43(18):4559–4568

    Article  CAS  Google Scholar 

  101. Srivastava HP, Arthanareeswaran G, Anantharaman N, Starov VM (2011) Performance of modified poly (vinylidene fluoride) membrane for textile wastewater ultrafiltration. Desalination 282:87–94

    Article  CAS  Google Scholar 

  102. Hwang J, Choi J, Kim JM, Kang SW (2016) Water treatment by polysulfone membrane modified with tetrahydrofuran and water pressure. Macromol Res 24(11):1020–1023

    Article  CAS  Google Scholar 

  103. Torkabad MG, Keshtkar AR, Safdari SJ (2017) Comparison of polyethersulfone and polyamide nanofiltration membranes for uranium removal from aqueous solution. Prog Nucl Energy 94:93–100

    Article  CAS  Google Scholar 

  104. Abdel-Karim A, Gad-Allah TA, El-Kalliny AS, Ahmed SI, Souaya ER, Badawy MI, Ulbricht M (2017) Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor. Sep Purif Technol 175:36–46

    Article  CAS  Google Scholar 

  105. Hernández-Aguirre OA, Nunez-Pineda A, Tapia-Tapia M, Gomez Espinosa RM (2016) Surface modification of polypropylene membrane using biopolymers with potential applications for metal ion removal. J Chem

    Google Scholar 

  106. Fan F, Wang L, Jiang W, Chen B, Liu H (2016) A novel polyethylene microfiltration membrane with highly permeable ordered ‘wine bottle’shaped through-pore structure fabricated via imprint and thermal field induction. J Phys D Appl Phys 49(12):125501

    Google Scholar 

  107. Febrianto G, Karisma D, Mangindaan D (2019) Polyetherimide nanofiltration membranes modified by interfacial polymerization for treatment of textile dyes wastewater. IOP Conf Ser Mater Sci Eng 622(1):012019

    Google Scholar 

  108. Lu Y, Fang W, Kong J, Zhang F, Wang Z, Teng X, Zhu Y, Jin J (2020) A microporous polymer ultrathin membrane for the highly efficient removal of dyes from acidic saline solutions. J Membr Sci 603:118027

    Google Scholar 

  109. Dutta M, Bhattacharjee S, De S (2020) Separation of reactive dyes from textile effluent by hydrolyzed polyacrylonitrile hollow fiber ultrafiltration quantifying the transport of multicomponent species through charged membrane pores. Separation Purif Technol 234:116063

    Google Scholar 

  110. Gao DW, Zhang T, Tang CYY, Wu WM, Wong CY, Lee YH, Yeh TH, Criddle CS (2010) Membrane fouling in an anaerobic membrane bioreactor: differences in relative abundance of bacterial species in the membrane foulant layer and in suspension. J Membr Sci 364(1–2):331–338

    Article  CAS  Google Scholar 

  111. Kang GD, Cao YM (2014) Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review. J Membr Sci 463:145–165

    Google Scholar 

  112. Li N, Xiao C, An S, Hu X (2010) Preparation and properties of PVDF/PVA hollow fiber membranes. Desalination 250(2):530–537

    Article  CAS  Google Scholar 

  113. Ma S, Meng J, Li J, Zhang Y, Ni L (2014) Synthesis of catalytic polypropylene membranes enabling visible-light-driven photocatalytic degradation of dyes in water. J Membr Sci 453:221–229

    Article  CAS  Google Scholar 

  114. Karisma D, Febrianto G, Mangindaan D (2018) Polyetherimide thin film composite (PEI-TFC) membranes for nanofiltration treatment of dyes wastewater. IOP Conf Ser Earth Environ Sci 195(1):012057. IOP Publishing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchna Bhatrola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatrola, K., Maurya, S.K., Kothiyal, N.C., Kumar, V. (2022). Polymer Membrane in Textile Wastewater. In: Khadir, A., Muthu, S.S. (eds) Polymer Technology in Dye-containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0886-6_3

Download citation

Publish with us

Policies and ethics