Skip to main content

Hybrid 3D-CNN Based Airborne Hyperspectral Image Classification with Extended Morphological Profiles Features

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization

Abstract

The classification of high-definition hyperspectral images from metropolitan locations needs to resolve specific critical issues. The conventional morphological openings and closures weaken object barriers and deform item forms, making the process more challenging. The morphological openings and closings by reconstruction can circumvent this issue to an extent with a few unintended effects. The images that are anticipated to vanish at a particular scale stay available later when morphological openings and closings are done. The extended morphological profiles (EMPs) with unique structuring factors and a growing number of morphological operators generate extremely high-dimensional data. These multidimensional facts may also contain duplicated data, creating a brand-new classification task for standard classification algorithms, particularly for classifiers that are not resistant to the Hughes phenomenon. In this article, we examine extended morphological profiles with partial reconstruction and directed MPs to categorize high-definition hyperspectral snap images from urban locations. Second, we expand it using a Hybrid 3D CNN to boost classification performance. In this article, the total accuracy of 99.42% is obtained with a small number of testing samples. Similarly, the average accuracy is reasonable when compared to other 2D and 3D convolutional neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, X., Yao, J., Xu, Z., Meng, D.: Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans. Geosci. Remote Sens.1–13 (2020).https://doi.org/10.1109/tgrs.2020.2964627

  2. Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sensors 2015, 258619 (2015)

    Google Scholar 

  3. Cao, X., Zhou, F., Xu, L., Meng, D., Xu, Z., Paisley, J.: Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans. Image Process. 27(5), 2354–2367 (2018)

    Article  MathSciNet  Google Scholar 

  4. Hamida, A.B., Benoit, A., Lambert, P., Amar, C.B.: 3-D deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 56(8), 4420–4434 (2018)

    Article  Google Scholar 

  5. Lee, H., Kwon, H.: Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26(10), 4843–4855 (2017)

    Article  MathSciNet  Google Scholar 

  6. Zhang, H., Li, Y., Zhang, Y., Shen, Q.: Spectral–spatial classification of hyperspectral imagery using a dual-channel convolutional neural network.Remote Sens. Lett. 8(5), 438–447 (2017)

    Google Scholar 

  7. Yue, J., Zhao, W., Mao, S., Liu, H.: Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 6(6), 468–477 (2015)

    Article  Google Scholar 

  8. Lin, Z., Chen, Y., Zhao, X., Wang, G.: Spectral–spatial classification of the hyperspectral image using autoencoders. In: Proceedings of IEEE 9th International Conference on Information Communication Signal Processing (ICICS), Dec 2013, pp. 1–5

    Google Scholar 

  9. Yue, J., Mao, S., Li, M.: A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens. Lett. 7(9), 875–884 (2016)

    Article  Google Scholar 

  10. Sun, S., Zhong, P., Xiao, H., Wang, R.: An MRF model-based active learning framework for the spectral-spatial classification of hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 9(6), 1074–1088 (2015)

    Article  Google Scholar 

  11. Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)

    Google Scholar 

  12. Li, J., Bioucas-Dias, J.M., Plaza, A.: Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49(10), 3947–3960 (2011)

    Article  Google Scholar 

  13. Li, J.: Active learning for hyperspectral image classification with stacked autoencoders based neural network. In: Proceedings of 7th Workshop Hyperspectral Image Signal Processing, Evolution Remote Sensing (WHISPERS), Jun 2015, pp. 1–4

    Google Scholar 

  14. Liu, P., Zhang, H., Eom, K.B.: Active deep learning for classification of hyperspectral images. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 10(2), 712–724 (2017)

    Google Scholar 

  15. Haut, J.M., Paoletti, M.E., Plaza, J., Li, J., Plaza, A.: Active learning with convolutional neural networks for hyperspectral image classification using a new Bayesian approach. IEEE Trans. Geosci. Remote Sens. 56(11), 6440–6461 (2018)

    Article  Google Scholar 

  16. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 50(3), 809–823 (2012)

    Article  Google Scholar 

  17. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2015). https://doi.org/10.1109/igarss.2015.7326945

  18. Chen, Y., Zhao, X., Jia, X.: Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 8(6), 2381–2392 (2015)

    Google Scholar 

  19. Midhun, M., Nair, S.R., Prabhakar, V., Kumar, S.S.: Deep model for classification of the hyperspectral image using restricted Boltzmann machine. Proc. ACM Int. Conf. Interdiscipl. Adv. Appl. Comput. 2014, 35 (2014)

    Google Scholar 

  20. Chang, C.I.: Hyperspectral Data Processing: Algorithm Design and Analysis. John Wiley and Sons (2013)

    Google Scholar 

  21. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geos. Rem. Sens. 43 (2005)

    Google Scholar 

  22. Camps-Valls, G., Bruzzone, L.: Kernel Methods for Remote Sensing Data Analysis. J. Wiley and Sons, NJ, USA (2009)

    Google Scholar 

  23. Camps-Valls, G., Tuia, D., Bruzzone, L., Atli Benediktsson, J.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. Signal Process. Mag. 31(1), 5–54 (2014)

    Google Scholar 

  24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  26. Hinton, G., Osindero, S., The, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  27. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. NIPS 19, 153–160 (2007)

    Google Scholar 

  28. Chen, Y., Lin, Z., Zhao, X., Wang, G., Yanfeng, G.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  29. Anand, R., Veni, S., Geetha, P., Subramoniam, S.R.: Comprehensive morphological profiles analysis of airborne hyperspectral image classification using machine learning algorithms. Int. J. Intell. Netw. 2, 1–6 (2021)

    Google Scholar 

  30. Anand, R., Veni, S., Aravinth, J.: Robust classification technique for hyperspectral images based on 3D-discrete wavelet transform. Remote Sens. 13(7), 1255 (2021)

    Article  Google Scholar 

  31. Sunil, A., Sajithvariyar, V.V., Sowmya, V., Sivanpillai, R., Soman, K.P.: Identifying oil pads in high spatial resolution aerial images using faster R-CNN. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.

    Google Scholar 

  32. Jayaprakash, C., Damodaran, B.B., Viswanathan, S., Soman, K.P.: Randomized independent component analysis and linear discriminant analysis dimensionality reduction methods for hyperspectral image classification. J. Appl. Remote Sens. 14(3), 036507 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anand, R., Veni, S., Geetha, P. (2022). Hybrid 3D-CNN Based Airborne Hyperspectral Image Classification with Extended Morphological Profiles Features. In: Das, B., Patgiri, R., Bandyopadhyay, S., Balas, V.E. (eds) Modeling, Simulation and Optimization. Smart Innovation, Systems and Technologies, vol 292. Springer, Singapore. https://doi.org/10.1007/978-981-19-0836-1_39

Download citation

Publish with us

Policies and ethics