Skip to main content

Direct Adaptive Inverse Control Based on Nonlinear Volterra Model via Fractional LMS Algorithm

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 292))

  • 561 Accesses

Abstract

This work addresses to perform the direct adaptive inverse control (DAIC) design via fractional least mean square (FLMS) algorithm. Since the controller of DAIC aims to track the plant inverse dynamics as a function of the plant model inverse identification, to track nonlinear dynamics of polynomial type, in this work, the controller is based on Volterra model. Since the performance of an estimation algorithm is important to update the estimate of the controller weight vector, the main objective of this work is to perform the performance analysis of FLMS algorithm, with respect to convergence speed and mean square error (MSE). The proposed analysis was performed on a model containing a polynomial type nonlinearity, represented by a Nonlinear AutoRegressive with eXogenous inputs (NARX) model. In addition, the proposed analysis was performed in the presence of a sinusoidal disturbance signal and time-varying reference signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widrow, B., Walach, E.: Adaptive signal processing for adaptive control. IFAC Proc. Volumes 16(9), 7–12. Elsevier (1983)

    Google Scholar 

  2. Widrow, B., Walach, E.: Adaptive Inverse Control: A Signal Processing Approach. Reissue ed. John Wiley & Sons, Inc (2008)

    Google Scholar 

  3. Shafiq, M. A., Shafiq, M., Ahmed, N.: Closed loop direct adaptive inverse control for linear plants. Sci. World J. 2014. Hindawi (2014)

    Google Scholar 

  4. Shafiq, M., Shafiq, A. M., Yousef, A. H.: Stability and convergence analysis of direct adaptive inverse control. Complexity 2017. Hindawi (2017)

    Google Scholar 

  5. Shafiq, M., Al Lawati, M., Yousef, H.: A simple direct adaptive inverse control structure. In: Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4. IEEE (2016)

    Google Scholar 

  6. Noronha, R. P.: Adaptive inverse control synthesis subject to sinusoidal disturbance for non-minimum phase plant via FVSS-NLMS algorithm. In: 2021 Australian & New Zealand Control Conference, pp. 179–184. IEEE (2021)

    Google Scholar 

  7. Ahmed, O.H.A.: High performance speed control of direct current motors using adaptive inverse control. WSEAS Trans. Syst. Control. 2, 54–63 (2012)

    Google Scholar 

  8. Skrjanc, I., Iglesias, A., Sanchis, A., Leite, D., Lughofer, E., Gomide, F.: Evolving fuzzy and neuro-fuzzy approaches in clustering. Inf. Sci. 490, 344 – 368. Elsevier (2019)

    Google Scholar 

  9. Ribeiro, H.A., Tiels, K., Umenberger, J., Schon, B.T., Aguirre, A.L.: On the smoothness of nonlinear system identification. Automatica 121, 109158. Elsevier (2020)

    Google Scholar 

  10. Rayouf, Z., Ghorbel, C., Braiek, N.B.: A new Hammerstein model control strategy: feedback stabilization and stability analysis. Int. J. Dyn. Control 7(4), 1453–1461. Springer (2019)

    Google Scholar 

  11. Gandhmal, D., Kumar, K.: Wrapper-enabled feature selection and CPLM-based NARX model for stock market prediction. Comput. J. 64(2), 169–184. Oxford University Press (2021)

    Google Scholar 

  12. Kang, K.X., Don, Y.H., Jiu, Z.C.: A novel extreme learning machine-based Hammerstein-Wiener model for complex nonlinear industrial processes. Neurocomputing 358, 246–254. Elsevier (2019)

    Google Scholar 

  13. Hammar, K., Djamah, T., Bettayeb, M.: Nonlinear system identification using fractional Hammerstein-Wiener models. Nonlinear Dyn. 98(3), 2327–2338. Springer (2019)

    Google Scholar 

  14. Doyler, J.F., Pearson, K.R., Ogunnaike, A.B.: Identification and Control Using Volterra Models. Springer (2002)

    Google Scholar 

  15. Jajarmi, A., Baleanu, D.: On the fractional optimal control problems with a general derivative operator. Asian J. Control 23(2), 1062–1071. Wiley Online Library (2021)

    Google Scholar 

  16. Noronha, R.P.: Nonlinear adaptive inverse control synthesis based on RLS Volterra model. In: 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), pp. 143–148. IEEE (2021)

    Google Scholar 

  17. Zhang, X., Zhao, Z.: Normalization and stabilization for rectangular singular fractional order TS fuzzy systems. Fuzzy Sets Syst. 381, 140–153. Elsevier (2020)

    Google Scholar 

  18. Guerin, A., Faucon, G., Le Bouquin-Jeannes, R.: Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Trans. Speech Audio Process. 11(6), 672 – 683. IEEE (2003)

    Google Scholar 

  19. Mortensen, R.: Nonlinear system theory: The volterra/wiener approach. JSTOR (1983)

    Google Scholar 

  20. Schoukens, J., Ljung, L.: Nonlinear system identification: A user-oriented road map. IEEE Control Syst. Mag. 39(6), 28–99. IEEE (2019)

    Google Scholar 

  21. Shiki, B. S., Lopes, V., da Silva. S.: Identification of nonlinear structures using discrete-time volterra series. J. Braz. Soc. Mech. Scie. Eng. 36(3), 523–532. Springer (2014)

    Google Scholar 

  22. Kapgate, S.N., Gupta, S., Sahoo, A.K.: Adaptive Volterra modeling for nonlinear systems based on LMS variants. In: 5th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 258–263. IEEE (2018)

    Google Scholar 

  23. Mayyas, K., Afeef, L.: A variable step-size partial-update normalized least mean square algorithm for second-order adaptive Volterra filters. Circ. Syst. Signal Process. 39, 6073–6097. Springer (2020)

    Google Scholar 

  24. Zahoor, R.M.A., Qureshi, I.M.: Modified least mean square algorithm using fractional derivative and its application to system identification. Eur. J. Sci. Res. 35(9), 1244–1248 (2015)

    Google Scholar 

  25. Ahmand, J., Zubair, M., Rizvi, S.S.H., Shaikh, M.S.: Design and analysis of the fractional-order complex least mean square (FoCLMS) algorithm. Circ. Syst. Signal Process. 40, 1–30. Springer (2021)

    Google Scholar 

  26. Da Silva, S.: Non-linear model updating of a three-dimensional portal frame based on wiener series. Int. J. Non-Linear Mech. 46(1), 312–320. Elsevier (2011)

    Google Scholar 

  27. Da Silva, S., Cogan, S., Foltête, E.: Nonlinear identification in structural dynamics based on wiener series and Kautz filters. Mech. Syst. Signal Process. 24(1), 52–58. Elsevier (2010)

    Google Scholar 

  28. Atangana, A., Gómez-Aguilar, F.F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Diff. Equ. 34(5), 1502–1523. Wiley Online Library (2018)

    Google Scholar 

  29. Ahmad, J., Usman, M., Khan, S., Syed, H. J.: Rvp-flms: a robust variable power fractional lms algorithm. In: 6th International Conference on Control System, Computing and Engineering (ICCSCE), pp. 494–497. IEEE (2016)

    Google Scholar 

  30. Verly, A.: Caracterização de agrupamentos de termos na seleção de estrutura de modelos polinomiais narx. Master’s thesis, Universidade Federal de Minas Gerais (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Possidônio Noronha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noronha, R.P. (2022). Direct Adaptive Inverse Control Based on Nonlinear Volterra Model via Fractional LMS Algorithm. In: Das, B., Patgiri, R., Bandyopadhyay, S., Balas, V.E. (eds) Modeling, Simulation and Optimization. Smart Innovation, Systems and Technologies, vol 292. Springer, Singapore. https://doi.org/10.1007/978-981-19-0836-1_36

Download citation

Publish with us

Policies and ethics