Skip to main content

Design and Finite Element Analysis of a Mechanical Gripper

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization

Abstract

The present industrial sector is undergoing a revolution due to automation, and in industrial automation, robots are extensively used since it reduces work force requirements and production time. A gripper serves as a robot’s hand and is widely used for different tasks in various fields. In this work, an attempt has been made to design and analyze a mechanical gripper using finite element analysis. The design of the gripper was done with the help of SolidWorks software, and the structural analysis was carried out using the ANSYS-FEA package. The static structural analysis was performed on the mating gears, claws and the overall model of the gripper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy, P.V.P., Suresh, V.V.N.S.: A review on importance of universal in industrial robot applications. Int. J. Mech. Eng. Robot. Res. 2278-0149 2(2) (2013)

    Google Scholar 

  2. Fuster, A.M.G.: Gripper design and development for a modular robot, DTU Electrical Engineering (2015)

    Google Scholar 

  3. Martinez, A.M.: Mechanical design of a robot’s gripper, Warsaw University of Technology (2015)

    Google Scholar 

  4. Razali, Z.B., Othman, M.H., Daud, M.H.: Optimum design of multi-function robot arm gripper for varying shape green product. EDP Sci. (2016). https://doi.org/10.1051/mateconf/20167801006

    Article  Google Scholar 

  5. Reddy, G.R., Eranki, V.K.P.: Design and structural analysis of a robotic arm. Master’s degree thesis, BTH-AMT-EX—2016/D06—SE (2016)

    Google Scholar 

  6. Tai, K., El-Sayed, A.R., Shahriari, M., Biglarbegian, M., Mahmud, S.: State of the Art Robotic Grippers and Applications (2016). https://doi.org/10.3390/robotics5020011

  7. Raut, V.A., Tambe, N.S., Li, Z.: Optimal design and finite element analysis of robot gripper for industrial application. Int. J. Eng. Sci. 1–9 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousam Bhagawati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhagawati, M. et al. (2022). Design and Finite Element Analysis of a Mechanical Gripper. In: Das, B., Patgiri, R., Bandyopadhyay, S., Balas, V.E. (eds) Modeling, Simulation and Optimization. Smart Innovation, Systems and Technologies, vol 292. Springer, Singapore. https://doi.org/10.1007/978-981-19-0836-1_32

Download citation

Publish with us

Policies and ethics