Skip to main content

Lactams, Azetidines, Penicillins, and Cephalosporins: An Overview on the Synthesis and Their Antibacterial Activity

  • Chapter
  • First Online:
N-Heterocycles

Abstract

Since the beginning of the twentieth century, studying natural lactams and the synthetic development of new lactam derivatives have been extensively exploited in medicinal chemistry. The main reason for the high interest in this class of compounds is that the lactam moiety is present in various natural and synthetic compounds that possess a broad spectrum of biological properties, especially those of three to seven members. The construction of the β-lactam ring (2-azetidinone) is the most studied synthesis of lactams carried out by synthetic organic chemists and medicinal chemists due to its medicinal value. Azetidines have been prepared by cyclization, nucleophilic substitution, cycloaddition, ring expansion and rearrangement, ring-contraction, and reduction of β-lactams. Penicillins and cephalosporins belong to the class of drugs known as β-lactams. Naturally produced penicillins by Penicillium chrysogenum are classified as 1st generation. The 2nd, 3rd, and 4th generations are all semi-synthetic obtained from chemical synthesis starting from 6-APA. The cephalosporins in clinical use are semi-synthetic derivatives of 7-ACA, obtained from cephalosporin C, produced by Acremonium chrysogenum. Semi-synthetic penicillins and cephalosporins continue to interest many research groups to discover new antibiotics that may tackle super bacteria. 6-APA and 7-ACA are essential starting materials used in studies on the synthesis of the β-lactams drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcaide B et al (2011) Controlled rearrangement of lactam-tethered allenols with brominating reagents: a combined experimental and theoretical study on alpha-versus β-keto lactam formation. Chem Eur J 17:11559–11566

    Article  CAS  PubMed  Google Scholar 

  • Alcaide B et al (2012) Stereoselective cyanation of 4-formyl and 4-imino-β-lactams: application to the synthesis of polyfunctionalized γ-lactams. Tetrahedron 68:10761–10768

    Article  CAS  Google Scholar 

  • Alcaide B, Almendros P, Aragoncillo C (2007) β-Lactams: versatile building blocks for the stereoselective synthesis of non β-lactam products. Chem. Rev. 107:4437–4492

    Google Scholar 

  • Amin SG, Glazer RD, Manhas MSA (1979) Convenient method for the synthesis of ß-lactams via 1-methyl-2-halopyridinium salts. Synthesis 3:210–213

    Article  Google Scholar 

  • Anant S et al (2020) Guidelines for β-lactam synthesis: glycal protecting groups dictate stereoelectronics and [2+2] cycloaddition kinetics. J Org Chem 85:12044–12057

    Article  CAS  Google Scholar 

  • Aoki T et al (2018) Cefiderocol (S-649266), a new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: Structure-activity relationship. Eur J Med Chem 155:847–868

    Article  CAS  PubMed  Google Scholar 

  • Ashraf Z, Bais A, Manir MM, Niazi U (2015) Novel penicillin analogues as potential antimicrobial agents; design, synthesis and docking studies. PLoS One 10:e0135293

    Google Scholar 

  • Bijev AT, Hung V (2001) Synthesis and antimicrobial activity of new pyrrolecarboxylic acid derivatives of ampicillin and amoxicillin. Arzneim Forsch Drug. Res. 51:667–672

    CAS  Google Scholar 

  • Boggián DB, Mata EG (2006) A versatile strategy for the solid-phase synthesis of penicillin derivatives: efficient preparation of 2β-methyl substituted penams as β-lactamase inhibitor analogues. Synthesis 20:3397–3404x

    Google Scholar 

  • Bott TM, West FG (2012) Preparations and synthetic applications of azetidines. Heterocycles 84:223264

    Google Scholar 

  • Boyer N et al (2007) Chemoselective and stereoselective synthesis of gem-difluoro- β-aminoesters or gem-difluoro-β-lactams from ethylbromodifluoroacetate and imines during Reformatsky reaction. Tetrahedron 63:12352–12366

    Article  CAS  Google Scholar 

  • van Brabandt W, Kimpe N (2005) Electrophile-induced ring expansions of β-lactams toward γ-lactams. J Org Chem 70:8717–8722

    Article  PubMed  CAS  Google Scholar 

  • Brown AG (1982) β-Lactam nomenclature. J Antimicrob Chemother 10:365–372

    Article  CAS  PubMed  Google Scholar 

  • Burkett BA et al (2009) Microwave-assisted synthesis of azetidines in aqueous media. Tetrahedron Lett 50:6590–6592

    Article  CAS  Google Scholar 

  • Computed by LexiChem 2.6.6 (PubChem release 2019.06.18)

    Google Scholar 

  • Corey EJ, Czakó B, Kürti L (2007) Molecules and medicine. Wiley, Hoboken

    Google Scholar 

  • Craig WA, Andes DR (2015) Cephalosporins. In: Bennett JE, Dolin R, Blaser MJ (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 8th edn. Elsevier, Philadelphia, pp 278–292

    Chapter  Google Scholar 

  • De Rosa M et al (2015) Novel penicillin-type analogues bearing a variable substituted 2-azetidinone ring at position 6: synthesis and biological evaluation. Molecules 20:22044–22057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekeukeleire S, D’hooghe M, Kimpe N (2009) Diastereoselective synthesis of bicyclic gamma-lactams via ring expansion of monocydic β-lactams. J Org Chem 74:1644–1649

    Google Scholar 

  • Enders D, Gries J (2005) Asymmetric synthesis of substituted azetidine amino acids. Synthesis 20:3508–3516

    Article  CAS  Google Scholar 

  • Fechting B et al (1968) Modification of antibiotics II. Preparation of 7-aminocephalosporanic acid. Helv Chem Acta 51:1100-l120

    Google Scholar 

  • Gao X et al (2018) One-pot synthesis of β-lactams by the Ugi and Michael addition cascade reaction. Org Biomol Chem 16:6096–6105

    Article  CAS  PubMed  Google Scholar 

  • Gaurav K, Kundu K, Kundu S (2007) Microbial production of 7-aminocepahlosporanic acid and new generation cephalosporins (cephalothin) by different processing strategies. Artif Cells, Blood Substitutes, Biotechnol 35:345–358

    Article  CAS  Google Scholar 

  • Ghosez L (2019) A lifetime journey into the world of chemistry. Tetrahedron 75:130345

    Google Scholar 

  • Giacomo B et al (2002) Synthesis of new C-6 alkyliden penicillin derivatives as β-lactamase inhibitors. Il Farmaco 57:273–283

    Article  PubMed  Google Scholar 

  • Gröger H et al (2017) Industrial landmarks in the development of sustainable production processes for the β-lactam antibiotic key intermediate 7-aminocephalosporanic acid (7-ACA). Sustain Chem Pharm 5:72–79

    Article  CAS  Google Scholar 

  • Gutmann L et al (1986) Comparative evaluation of a new beta-lactamase inhibitor, YTR 830, combined with different beta-lactam antibiotics against bacteria harboring known beta-lactamases. Antimicrob Agents Chemother 29:955–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodous BL, Fu GC (2002) Enantioselective Staudinger synthesis of β-lactams catalyzed by a planar-chiral nucleophile. J Am Chem Soc 124:1578–1579

    Article  CAS  PubMed  Google Scholar 

  • Hosseini A, Schreiner PR (2019) Synthesis of exclusively 4-substituted β-lactams through the Kinugasa reaction utilizing calcium carbide. Org Lett 21:3746–3749

    Article  CAS  PubMed  Google Scholar 

  • Jarrahpour A, Zarei M (2009) DMF-dimethyl sulfate as a new reagent for the synthesis of β-lactams. Tetrahedron Lett 50:1568–1570

    Article  CAS  Google Scholar 

  • Jarrahpour A, Zarei M (2010) Efficient one-pot synthesis of 2-azetidinones from acetic acid derivatives and imines using methoxymethylene-N, N-dimethyliminium salt. Tetrahedron 66:5017–5023

    Article  CAS  Google Scholar 

  • Kallenberg AI, van Rantwijk F, Sheldon RA (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347:905–926

    Article  CAS  Google Scholar 

  • Kaufman T, Amorengo M (2013) Synthesis of optically active 1,2,3-trisubstituted azetidines employing an organocatalytic approach with L-proline. Tetrahedron Lett 54:1924–1927

    Article  CAS  Google Scholar 

  • Kern N et al (2014) Robust synthesis of N-sulfonylazetidine building blocks via ring contraction of α-bromo N-sulfonylpyrrolidinone. Org Lett 16:6104–6107

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Roh SW, Lee DG (2014) Rhodium-catalyzed oxygenative [2 + 2] cycloaddition of terminal alkynes and imines for the synthesis of β-lactams. Org Lett 16:2482–2485

    Article  CAS  PubMed  Google Scholar 

  • Kinugasa M, Hashimoto S (1972) The reactions of copper(I) phenylacetylide with nitrones. J Chem Soc Chem Commun, 466–467

    Google Scholar 

  • Lee S, Robinson G (1995) Process development: fine chemicals from grams to kilograms. Oxford University Press, Oxford, Oxford

    Google Scholar 

  • Liu CJ, Dutta D, Mitscher L (2015) Synthesis of new penicillin derivatives as drug-like molecules for biological screening. Chin Chem Lett 26:113–117

    Article  CAS  Google Scholar 

  • LiverTox: clinical and research information on drug-induced liver injury (2012) Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases 2012-. Penicillins (2nd generation) https://www.ncbi.nlm.nih.gov/books/NBK548033/. Accessed 01 Jun 2021

  • Martín-Torres I, González-Muñiz R. (2017) β-Lactams through single bond ring closing: methods, transformations and bioactivity. In: Banik BK (ed) Beta-Lactams. Novel synthetic pathways and applications. Springer International Publishing AG, pp 219–252.

    Google Scholar 

  • McKay CS, Kennedy DC, Pezacki JP (2009) Studies of multicomponent Kinugasa reactions in aqueous media. Tetrahedron Lett 50:1893–1896

    Article  CAS  Google Scholar 

  • Mehra V et al (2017) Recent advances in synthetic facets of immensely reactive azetidines. RSC Adv 7:45763–45783

    Article  CAS  Google Scholar 

  • Micetich RG et al (1987) Synthesis and β-lactamase inhibitory properties of 2β-[(1,2,3-triazol-1-yl)methyl]-2α-methylpenam-3α-carboxylic acid 1,1-dioxide and related triazolyl derivatives. Med Chem 30:1469–1474

    Article  CAS  Google Scholar 

  • Miura M et al (1995) Copper-catalyzed reaction of terminal alkynes with nitrones. selective synthesis of 1-aza-1-buten-3-yne and 2-hetidinone derivatives. J Org Chem 60:4999–5004

    Article  CAS  Google Scholar 

  • Mondino MG (2014) Compostos heterocíclicos estudo e aplicações sintéticas. Editora Atheneu, São Paulo

    Google Scholar 

  • Morin RB et al (1969) Chemistry of cephalosporin antibiotics. XIV. The reaction of cephalosporin C with nitrosyl chloride. J Am Chem Soc 91:1396–1400

    Article  CAS  PubMed  Google Scholar 

  • Mukai T et al (1983) Photocycloaddition of 3-aryl-2-isoxazoline with five-membered heterocycles. Chem Lett 12:1357–1360

    Article  Google Scholar 

  • Musio B et al (2016) Combination of enabling technologies to improve and describe the stereoselectivity of Wolff-Staudinger cascade reaction. Synthesis 48:3515–3526

    Article  CAS  Google Scholar 

  • Nagao Y et al (1996) A facile synthesis of β-lactams by the cyclization of β-amino acids exploiting 3,3”-(phenylphosphoryl)-bis(1,3-thiazolidine-2-thione. Heterocycles 42:849–859

    Article  CAS  Google Scholar 

  • Newton G (1957) Synthesis of Penicillin V. Nature 892–893

    Google Scholar 

  • Nikolaou KC, Montagnon T (2008) Molecules that changed the world. Wiley, Weinheim

    Google Scholar 

  • Paradkar A (2013) Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J Antibiot 66:411–420

    Article  CAS  Google Scholar 

  • Parsels KA et al (2021) Cefiderocol: a novel siderophore cephalosporin for multidrug-resistant gram-negative bacterial infections. J Antimicrob Chemother 76:1379–1391

    Article  CAS  PubMed  Google Scholar 

  • Pharande SG (2021) Synthesis of lactams via isocyanide-based multicomponent reactions. Synthesis 53:418–446

    Article  CAS  Google Scholar 

  • Pollegioni L, Rosini E, Molla G (2013) Cephalosporin C acylase: dream and(/or) reality. Appl Microbiol Biotechnol 97:2341–2355

    Article  CAS  PubMed  Google Scholar 

  • PubChem: The compound identification (CID) numbers are 24747544 (22a), 24747436 (22b), 24747499 2(2c), 24747495 (22d), 24747364 (22e), 24747549 (22f), 25011528 (23), 25011526 (24a), 24747497 (24b), 24747437 (24c), 25011527 (25a), 24789294 (25b). https://pubchem.ncbi.nlm.nih.gov. Accessed 21 Jun 2021

  • Richardson AD, Schindler SC, Becker MR (2020) Synthesis of azetidines by aza-Paternò-Buchi reactions. Chem Sci 11:7553–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzmann TN, Ratcliffe RW, Christensen BG, Bouffard FA (1980) A stereocontrolled synthesis of (+)-thienamycin. J Am Chem Soc 102:6161–6163

    Article  CAS  Google Scholar 

  • Sawant AM et al (2020) Process development for 6-aminopenicillanic acid production using Lentikats-encapsulated Escherichia coli cells expressing penicillin V acylase. ACS Omega 5:28972–28976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholar E (2007) Sulbactam. In: Enna SJ, Bylund, DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, pp 1–5

    Google Scholar 

  • Sheehan JC, Henery-Logan KR (1957) The total synthesis of penicillin V. J. Amer. Chem. Soc. 79:1262–1263

    Article  CAS  Google Scholar 

  • Sheehan JC, Henery-Logan KR (1959) A general synthesis of the penicillins. J Am Chem Soc 81:5838–5839

    Article  CAS  Google Scholar 

  • Sheehan JC, Henery-Logan KR (1962) The total and partial general syntheses of the penicillins. J Am Chem Soc 84:2983–2990

    Article  CAS  Google Scholar 

  • Shindo M et al (2000) New method for activation of aldimines in cycloaddition of lithium ynolates with N-2-methoxyphenyl imines leading to β-lactams. Tetrahedron Lett 41:5943–5946

    Article  CAS  Google Scholar 

  • Singh GS (2020) Chapter one—advances in synthesis and chemistry of azetidines. In: Scriven EFV, Ramsden CA (eds) Advances in heterocyclic chemistry, vol 130. Elsevier, pp 49–55

    Google Scholar 

  • Singh GS, D’hooghe M, De Kimpe N (2008) Azetidines, azetines, and azetes. In: Katritzky, AR, Ramsden CA, Scriven E, Taylor R (eds) Comprehensive heterocyclic chemistry-III, vol 2, Elsevier, Oxford, pp 1–110

    Google Scholar 

  • Singh GS, Sudheesh S (2014) β-Lactams. In: Janecki T (ed) Natural lactones and lactams: synthesis, occurrence and biological activity, 1st edn. Wiley, New York, pp 101–145

    Google Scholar 

  • Singh GS (2003) Recent progress in the synthesis and chemistry of azetidinones. Tetrahedron 59:7631–7649

    Article  CAS  Google Scholar 

  • Stanković S et al (2011) Synthesis of 3-methoxyazetidines via an aziridine to azetidine rearrangement and theoretical rationalization of the reaction mechanism. J Org Chem 76:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Stecko S, Furman B, Chmielewski M (2014) Kinugasa reaction: an ‘ugly duckling’ of β-lactam chemistry. Tetrahedron 70:7817–7844

    Article  CAS  Google Scholar 

  • Taguchi et al (1996) Synthesis of β-lactams from isocyanates and vinyl ethers under high pressure. Bull Chem Soc Jpn 69:1667–1672

    Google Scholar 

  • Toomer CA et al (1991) Structural studies on tazobactam. J Med Chem 34:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Troisi L, Granito C, Pindinelli E (2010) Novel and recent synthesis and applications of β-lactams. In: Banik B (ed) Heterocyclic Scaffolds I. Topics in Heterocyclic Chemistry, vol 22, Springer, Berlin, Heidelberg

    Google Scholar 

  • Vicario JL, Badía D, Carrillo L (2001) Stereocontrolled Mannich reaction with enolizable imines using (S, S)-(+)-pseudoephedrine as chiral auxiliary. Asymmetric synthesis of α, β-disubstituted β-aminoesters and β-lactams. J Org Chem 66:9030–9032

    Article  CAS  PubMed  Google Scholar 

  • Viegas-Junior C et al (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829–52

    Article  CAS  PubMed  Google Scholar 

  • Vishwanatha TM et al (2011) Synthesis of β-lactam peptidomimetics through Ugi MCR: first application of chiral Nb-Fmoc amino alkyl isonitriles in MCRs. Tetrahedron Lett 52:5620–5624

    Article  CAS  Google Scholar 

  • Wang Y et al (2006) Do reaction conditions affect the stereoselectivity in the Staudinger reaction? J Org Chem 71:6983–6990

    Article  CAS  PubMed  Google Scholar 

  • WHO (2020) Antibacterial agents in clinical and preclinical development: an overview and analysis. https://www.who.int/publications/i/item/9789240021303. Accessed 30 May 2021

  • Woodward RB et al (1966) The total synthesis of cephalosporin C. J Am Chem Soc 88:852–853

    Article  CAS  Google Scholar 

  • Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical Synthesis in antibacterial drug discovery Angew. Chem Int Ed 53:2–32

    Article  Google Scholar 

  • Yang Y, Rasmussen BA, Shlaes DM (1999) Class A beta-lactamases-enzyme-inhibitor interactions and resistance. Pharmacol Ther 83:141–151

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Sun D (2013) Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules 18:6230–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarei M, Jarrahpour A (2011) A mild and efficient route to 2-azetidinones using the cyanuric chloride-DMF complex. Synlett 17:2572–2576

    Google Scholar 

  • Zeng XH et al (2014) One-pot regioselective synthesis of β-lactams by a tandem Ugi 4CC/SN cyclization. Tetrahedron 70:3647–3652

    Article  CAS  Google Scholar 

  • Zhang QJ, Xu WX (1993) Morphological, physiological and enzymatic characteristics of cephalosporin acylase-producing Arthrobacter strain 45–8A. Arch Microbiol 159:392–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang YR et al (2008) Chiral N-heterocyclic carbene catalyzed Staudinger reaction of ketenes with imines: highly enantioselective synthesis of N-Boc β-lactams. Org Lett 10:277–280

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Li CJ (2006) Highly efficient three-component synthesis of β-lactams from N-methylhydroxylamine, aldehydes, and phenylacetylene. Chem Asian J 1:203–209

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adilson Beatriz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beatriz, A., Mondino, M.G., de Lima, D.P. (2022). Lactams, Azetidines, Penicillins, and Cephalosporins: An Overview on the Synthesis and Their Antibacterial Activity. In: Ameta, K.L., Kant, R., Penoni, A., Maspero, A., Scapinello, L. (eds) N-Heterocycles. Springer, Singapore. https://doi.org/10.1007/978-981-19-0832-3_3

Download citation

Publish with us

Policies and ethics