Skip to main content

Bacterial Fish Diseases and Treatment

  • Chapter
  • First Online:
Aquaculture Science and Engineering

Abstract

Fish food is an inevitable item in human consumption with healthy source of good quality proteins and fat. Aqua industry can help to improve food security, livelihoods for the poorest and to meet the world’s food demands. But producing more seafood that is at affordable cost with rich nutrition is challenging for aqua industry. Many factors affect the productivity of aqua industry; one such an important constraint is bacterial diseases. Hence, Aqua industry, a booming business sector, immensely requires continued research with scientific and technical developments, and innovations. Study of bacterial fish disease is one such thrust area which requires intense research to understand the causes and control bacterial diseases in fish. The appearance and development of a fish disease is the result of the interaction among pathogen, host and environment. An insight into bacterial fish diseases, clinical symptoms and treatment may help to manage the bacterial diseases and so can make aqua industry a more profitable field. This chapter deals with different aspects of the most threatening bacterial diseases, occurring in farmed fishes and also in wild fishes, which are results in fish loss and economic loss worldwide. A wide range of gram positive and gram-negative bacteria causing bacterial diseases, clinical symptoms, diagnosis, treatment, vaccines and the nature of water habitat are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acuigrup (Laboratorio de Ictiopatología Acuicultura Bioter, Madrid, Spain) (1980) Flavobacteriosis in coho salmon (Oncorhynchus kisutch). In: Ahne W (ed) Fish diseases. Springer, Berlin, pp 212–217

    Google Scholar 

  • Ahmed K, Kumar WAG (2005) Handbook on fish and crustacean diseases in the SAARC region, 1st edn. SAARC Agricultural Information Centre, Bangladesh

    Google Scholar 

  • Ahne W, Popp W, Hoffmann R (1982) Pseudomonas fluorescens as a pathogen of tench (Tinca tinca). Bull Eur Assoc Fish Pathol 4:56–57

    Google Scholar 

  • Ainsworth AJ, Capley G, Waterstreet P, Munson D (1986) Use of monoclonal antibodies in the indirect fluorescent antibody technique (IFA) for the diagnosis of Edwardsiella ictaluri. J Fish Dis 9:433–444

    Article  Google Scholar 

  • Amandi A, Hiu SF, Rohovec JS, Fryer JL (1982) Isolation and characterization of Edwardsiella tarda from fall Chinook salmon (Oncorhynchus tshawytscha). Appl Environ Microbiol 43:1380–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkush KD, McBride AM, Mendonca HL, Okihiro MS, Andree KB, Marshall S, Henriquez V, Hedrick RP (2005) Genetic characterisation and experimental pathogenesis of Piscirickettsia salmonis isolated from white seabass Astractoscion nobilis. Dis Aquat Organ 63:139–149

    Article  CAS  PubMed  Google Scholar 

  • Austin B (1985) Evaluation of antimicrobial compounds for the control of bacterial kidney disease in rainbow trout, Salmo gairdneri, Richardson. J Fish Dis 8:209–220

    Article  Google Scholar 

  • Austin B (2011) Taxonomy of bacterial fish pathogens. Vet Res 42(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  • Austin B, Austin D (2007) Bacterial fish pathogens: diseases of farmed and wild fish

    Google Scholar 

  • Austin B, Austin DA (2012) Bacterial fish pathogens: disease of farmed and wild fish (fifth). Springer, Berlin

    Book  Google Scholar 

  • Austin B, Gonzalez CJ, Stobie M, Curry JI, McLoughlin MF (1992) Recovery of Janthinobacterium lividum from diseased rainbow trout, Oncorhynchus mykiss (Walbaum), in Northern Ireland and Scotland. J Fish Dis 15(4):357–359

    Article  Google Scholar 

  • Austin B, Stobie M (1992) Recovery of Micrococcus luteus and presumptive Planococcus sp. from moribund fish during an outbreak of rainbow trout, Oncorhynchus mykiss (Walbaum), fry syndrome in England. J Fish Dis 15(2):203–206

    Article  Google Scholar 

  • Austin B, Stuckey LF, Robertson PA, Effendi I, Griffith DRW (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, vibrio anguillarum and vibrio ordalii. J Fish Dis 18(1):93–96

    Article  Google Scholar 

  • Austin J, Hatfield DB, Grindle AC, Bailey JS (1993) Increasing recycling in office environments: the effects of specific, informative cues. J Appl Behav Anal 26(2):247–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avendaño-Herrera R, Magariños B, López-Romalde S, Romalde JL, Toranzo AE (2004) Phenotypic characterization and description of two major O-serotypes in Tenacibaculum maritimum strains from marine fishes. Dis Aquat Organ 58:1–8

    Article  PubMed  Google Scholar 

  • Bader JA, Shoemaker CA, Klesius PH (2003) Rapid detection of columnaris disease in channel catfish (Ictalurus punctatus) with a new species-specific 16-S rRNA gene-based PCR primer for Flavobacterium columnare. J Microbiol Methods 52:209–220

    Article  CAS  PubMed  Google Scholar 

  • Bagum N, Monir MS, Khan MH (2013) Present status of fish diseases and economic losses due to incidence of disease in rural freshwater aquaculture of Bangladesh. J Innov Dev Strat 7:48–53

    Google Scholar 

  • Bauer ON, Musselius VA, Strekov YA (1973) Diseases of fishes [English translation]. In: Israel Programfor Scientific Translations, Jerusalem, p 220

    Google Scholar 

  • Baumann L, Bowditch RD, Baumann P (1983) Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. Int J St Bacteriol 33:793–802

    Article  Google Scholar 

  • Baxa DV, Kawai K, Kusuda R (1986) Characteristics of gliding bacteria isolated from diseased cultured flounder, Paralichthys olivaceous. Fish Pathol 21:251–258

    Article  Google Scholar 

  • Baxa DV, Kawai K, Kusuda R (1988) In vitro and in vivo activities of Flexibacter maritimus toxins rep. Usa Mar Biol Inst Kochi Univ 10(1–8):1–8

    Google Scholar 

  • Baya AM, Lupiani B, Bandin I, Hatrick FM, Figueras A, Carnahan A, May EM, Toranzo AE (1992) Phenotypic and pathobiological properties of Corynebacterium aquahcunl isolated from diseased striped bass. Dis Aquat Organ 14:115–126

    Article  Google Scholar 

  • Benediktsdottir E, Helgason S, Sigurjonsdottir H (1998) Vibrio spp. isolated from salmonids with shallow skin lesions and reared at low temperature. J Fish Dis 21:19–28

    Article  CAS  PubMed  Google Scholar 

  • Bernardet JF, Campbell AC, Buswell JA (1990) Flexibacter maritimus is the agent of ‘black patch necrosis’ in Dover sole in Scotland. Dis Aquat Organ 8:233–237

    Article  Google Scholar 

  • Bidinost C, Wilderman PJ, Dorsey CW, Acits LA (1999) Analysis of the replication elements of the pMJ101 plasmid from the fish pathogen vibrio ordalii. Plasmid 42:20–30

    Article  CAS  PubMed  Google Scholar 

  • Birkbeck T, Laidler LA, Grant A, Cox D (2002) Pasteurella skyensis sp. nov., isolated from Atlantic salmon (Salmo salar L.). Int J Syst Evol Microbiol 52:699–704

    CAS  PubMed  Google Scholar 

  • Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M (2005) Disease and health management in Asian aquaculture. Vet Parasitol 132:249–272

    Article  PubMed  Google Scholar 

  • Bullock GL (1965) Characteristics and pathogenicity of a capsulated pseudomonas isolated from goldfish. Appl Microbiol 13(1):89–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke JB, Rodgers LJ (1981) Identification of pathogenic bacteria associated with the occurrence of “red spot” in sea mullet, Mugil cephalus L., in southeastern Queensland. J Fish Dis 4:153–159

    Article  Google Scholar 

  • Camp KL, Wolters WR, Rice CD (2000) Survivability and immune responses after challenge with Edwardsiella ictaluri in susceptible and resistant families of channel catfish, Ictalurus punctatus. Fish Shellfish Immunol 10(6):475–487

    Article  CAS  PubMed  Google Scholar 

  • Campbell EJM, Scadding JG, Roberts RS (1979) The concepts of disease. British Med J 2(6193):757–762

    Article  CAS  Google Scholar 

  • Canestrini G (1893) La malatti dominate delle anguille. Atti Inst Veneto Serv 7:809–814

    Google Scholar 

  • Carson J, Burks V, Parke RD (1993) Parent–child physical play: determinants and consequences. In: MacDonald K (ed) Children’s play in society. State University of New York Press, Albany, NY, pp 197–220

    Google Scholar 

  • Chantanachookhin C, Seikai T, Tanaka M (1991) Comparative study of the ontogeny of the lymphoid organs in three species of marine fish. Aquaculture 99:143–155

    Article  Google Scholar 

  • Chern R, Chao C (1994) Outbreaks of a disease caused by rickettsia-like organism in cultured tilapias in Taiwan. Fish Pathol 29:61–71

    Article  Google Scholar 

  • Colorni A, Paperna I, Gordin H (1981) Bacterial infections in gilt-head sea bream Sparus aurata cultured at Elat. Aquaculture 23:257–267

    Article  Google Scholar 

  • Crosa JH (1980) A plasmid associated with virulence in the marine fish pathogen vibrio anguillarum specifies an iron sequestering system. Nature 284:566–568

    Article  CAS  PubMed  Google Scholar 

  • Crumlish M, Dung T, Turnbull J, Ngoc N, Ferguson H (2002) Identification of Edwardsiella ictaluri from diseased freshwater catfish, Pangasius hypophthalmus (Sauvage), cultured in the Mekong Delta. Vietnam J Fish Dis 25:733–736

    Article  Google Scholar 

  • Cvitanich JD, Garate NO, Smith CE (1991) The isolation of a rickettsia-like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J Fish Dis 14:121–145

    Article  Google Scholar 

  • Dhayanithi NB, Ajith Kumar TT, Arockiaraj J, Balasundaram C, Harikrishnan R (2015) Dietary supplementation of Avicennia marina extract on immune protection and disease resistance in Amphiprion sebae against vibrio alginolyticus. Fish Shellfish Immunol 45(1):52–58

    Article  PubMed  Google Scholar 

  • Dobson SJ, Franzmann PD (1996) Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558

    Article  CAS  Google Scholar 

  • Eissa AE, Elsayed EE, McDonald R, Faisal M (2006) First record of Renibacterium salmoninarum in the sea lamprey (Petromyzon marinus). J Wildl Dis 42(3):556–560

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) FAO yearbook of fishery and aquaculture statistics 2016. Fisheries and Aquaculture Department, Rome

    Google Scholar 

  • Farkas T, Csengeri I, Majoros F, Oláh J (1980) Metabolism of fatty acids in fish: III. Combined effect of environmental temperature and diet on formation and deposition of fatty acids in the carp, Cyprinus carpio Linnaeus 1758. Aquaculture 20(1):29–40

    Article  CAS  Google Scholar 

  • Flemming L, Rawlings D, Chenia H (2007) Phenotypic and molecular characterisation of fish-borne Flavobacterium johnsoniae-like isolates from aquaculture systems in South Africa. Res Microbiol 158(1):18–30

    Article  CAS  PubMed  Google Scholar 

  • Fringuelli E, Gordon AW, Rodger H, Welsh MD, Graham DA (2012) Detection of Neoparamoeba perurans by duplex quantitative Taqman real-time PCR in formalin-fixed, paraffin-embedded Atlantic salmonid gill tissues. J Fish Dis 35(10):711–724

    Article  CAS  PubMed  Google Scholar 

  • Fryer J, Hedrick R (2003) Piscirickettsia salmonis: a gram-negative intracellular bacterial pathogen of fish. J Fish Dis 26:251–262

    Article  CAS  PubMed  Google Scholar 

  • Fryer JL, Lannan CN, Garces LH, Larenas JJ, Smith PA (1990) Isolation of a rickettsiales-like organism from diseased coho salmon (Oncorhynchus kisutch) in Chile. Fish Pathol 25:107–114

    Article  Google Scholar 

  • Fujihara MP, Nakatani RE (1971) Antibody production and immune responses of rainbow trout and coho salmon to Chondrococcus columnaris. J Fish Res Bd Can 28:1253–1258

    Article  Google Scholar 

  • Greger E, Goodrich T (1999) Vaccine development for winter ulcer disease, Vibrio viscosus, in Atlantic salmon, Salmo salar L. J Fish Dis 22:193–199

    Article  Google Scholar 

  • Grove S, Reitan LJ, Lunder T, Colquhoun D (2008) Real-time PCR detection of Moritella viscosa, the likely causal agent of winter-ulcer in Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 82:105–109

    Article  CAS  PubMed  Google Scholar 

  • Han JD, Bertin N, Hao T, Goldberg D, Berriz G, Zhang L, Dupuy D, Walhout A, Cusick M, Roth F, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    Article  CAS  PubMed  Google Scholar 

  • Handlinger J, Soltani M, Percival S (1997) The pathology of Flexibacter maritimus in aquaculture species in Tasmania. Australia J Fish Dis 20:159–168

    Article  Google Scholar 

  • Harikrishnan R, Balasundaram C, Heo MS (2012a) Effect of Inonotus obliquus enriched diet on hematology, immune response, and disease protection in kelp grouper, epinephelus bruneus against Vibrio harveyi. Aquaculture 344–349:48–53

    Article  CAS  Google Scholar 

  • Harikrishnan R, Kim DH, Hong SH, Mariappan P, Balasundaram C, Heo MS (2012b) Non-specific immune response and disease resistance induced by Siegesbeckia glabrescens against Vibrio parahaemolyticus in Epinephelus bruneus. Fish Shellfish Immunol 33:359–364

    Article  CAS  PubMed  Google Scholar 

  • Harikrishnan R, Kim JS, Kim MC, Dharaneedharan S, Kim DH, Hong SH, Song CY, Balasundaram C, Heo MS (2012c) Effect of dietary supplementation with Suaeda maritima on blood physiology, innate immune response, and disease resistance in olive flounder against Miamiensis avidus. Exp Parasitol 131:195–203

    Article  CAS  PubMed  Google Scholar 

  • Hawke JP (1979) A bacterium associated with disease of pond cultured channel catfish, Ictalurus punctatus. J Fish Res Board Can 36:1508–1512

    Article  Google Scholar 

  • Hikida M, Wakabayashi H, Egusa S, Masumura K (1979) Flexibacter sp., a gliding bacterium pathogenic to some marine fishes in Japan. Bull Jpn Soc Sci Fish 45:421–428

    Article  CAS  Google Scholar 

  • Hirvela-Koski V (2005) Fish pathogens Aeromonas salmonicida and Renibacterium salmoninarum: diagnostic and epidemiological aspects. Nat Veter Food Res Inst Univ Helsinki. dissertation

    Google Scholar 

  • Jacobs L, Chenia HY (2007) Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from south African aquaculture systems. Int J Food Microbiol 114(3):295–306

    Article  CAS  PubMed  Google Scholar 

  • Jeffery KR, Stone D, Feist SW, Verner-Jeffreys D (2010) An outbreak of disease caused by Francisella sp. in Nile tilapia Oreochromis niloticus at a recirculation fish farm in the UK. Dis Aquat Organ 91:161–165

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Amend DF (1983) Comparison of efficacy of several delivery methods using Yersinia ruckeri bacterin on rainbow trout, Salmo gairdneri Richardson. J Fish Dis 6:331

    Article  Google Scholar 

  • Johnson PJ, Paull SH (2011) The ecology and emergence of diseases in fresh waters. Freshw Biol 56:638–657

    Article  Google Scholar 

  • Juni E, Bøvre K (2005) Family II. Moraxellaceae Rossau, Van Landschoot, gills and De ley 1991 317VP. In: Brenner D, Kreig NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, Berlin, Heidelberg, pp 411–442

    Google Scholar 

  • Kodama H, Moustafa M, Ishiguro S, Mikami T, Izawa H (1984) Extracellular virulence factors of fish vibrio: relationships between toxic material, hemolysin, and proteolytic enzymes. Am J Vet Res 45:2203–2207

    CAS  PubMed  Google Scholar 

  • Kudo S, Kimura N (1983a) Ultrastructural studies on bacterial gill disease in rainbow trout fingerlings I Transmission electron microscopy. Japan J Ichthyol 30(3):247–260

    Google Scholar 

  • Kudo S, Kimura N (1983b) Ultrastructural studies on bacterial gill disease in rainbow trout fingerlings IV. The recovery from hyperplasia in an artificial infection. Bull Japan Soc Sci Fish 49(11):1635–1641

    Article  Google Scholar 

  • Kusuda R, Inoue K (1976) Studies on the application of ampicillin for pseudotuberculosis of cultured yellowtails. I. in vitro studies on sensitivity, development of drug-resistance, and reversion of acquired drug-resistance characteristics of Pasteurella piscicida. Bull Jpn Soc Sci Fish 42(9):969–973

    Article  CAS  Google Scholar 

  • Kusuda R, Yokoyama J, Kawai K (1986) Bacteriological study on cause of mass mortalities in cultured black seabream fry. Bull Jpn Sot Sci Fish 52:1745–1751

    Article  Google Scholar 

  • Lannan CN, Ewing SA, Fryer JL (1991) A fluorescent antibody test for detection of rickettsia causing disease in Chilean salmonids. J Aquat Anirn Health 3:229–234

    Article  Google Scholar 

  • Larenas J, Astorga C, Contreras J, Garcés H, Fryer J, Smith P (1996a) Rapid detection of Piscirickettsia salmonis using microwave irradiation. Fish Pathol 31:231–232

    Article  Google Scholar 

  • Larenas J, Astorga C, Contreras J, Smith P (1996b) Detección de Piscirickettsia salmonis en ovas fertilizadas provenientes de truchas arco iris (Oncorhynchus mykiss) experimentalmente infectadas. Arch Med Vet 28:161–166

    Google Scholar 

  • Leisner JJ, Laursen BG, Prévost H, Drider D, Dalgaard P (2007) Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol Rev 31(5):592–613

    Article  CAS  PubMed  Google Scholar 

  • Lewisch E, Dressler A, Menanteau-Ledouble S, Saleh M, El- MM (2014) Francisellosis in ornamental Afri can cichlids in Austria. Bull Eur Assoc Fish Pathol 34:63–70

    Google Scholar 

  • Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, Ong CT, Cubeñas-Potts C, Hu M, Lei EP, Bosco G, Qin ZS, Corces VG (2015) Widespread rearrangement of 3D chromatin organization underlies Polycomb-mediated stress-induced silencing. Mol Cell 58(2):216–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstrom NM, Call DR, House ML, Moffitt CM, Cain KD (2009) A quantitative enzyme-linked immunosorbent assay and filtration-based fluorescent antibody test as potential tools to screen broodstock for infection with Flavobacterium psychrophilum. J Aquat Anim Health 21(1):43–56

    Article  PubMed  Google Scholar 

  • Lobb CJ, Rhoades M (1987) Rapid plasmid analysis for identification of Edwardsiella ictaluri from infected channel catfish (Ictalurus punctatus). Appl Environ Microbiol 53:1267–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López JR, NfflÇez S, MagariÇos B, Castro N, Navas JI, de la Herran R, Toranzo AE (2009) First isolation of Tenacibaculum maritimum from wedge sole, Dicologoglossa cuneata (Moreau). J Fish Dis 32:603–610

    Article  PubMed  CAS  Google Scholar 

  • Lunder T, Evensen O, Holstad G, Hastein T (1995) ‘Winter ulcer’ in the Atlantic salmon Salmo salar. Pathological and bacteriological investigations and transmission experiments. Dis Aquat Organ 23:39–49

    Article  Google Scholar 

  • Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. J Gen Microbiol 132(1647–1):656

    Google Scholar 

  • Magarinos B, Couso N, Noya M, Merino P, Toranzo A, Lamas J (2001) Effect of temperature on the development of pasteurellosis in carrier gilthead seabream (Sparus aurata). Aquaculture 195:17–21

    Article  Google Scholar 

  • Markovic M, Radojicic M, Cosic S, Levnaic D (1996) Massive death of silver carp (Hypophthalmichthys molitrix Val.) and big head (Aristichthys nobilis rich.) caused by Pseudomonas fluorescens bacteria. Vet Glas 50:761–765

    Google Scholar 

  • Mata AI, Gibello A, Casamayor A, Blanco MM, Domínguez L, Fernández-Garayzábal JF (2004) Multiplex PCR assay for detection of bacterial pathogens associated with warm-water Streptococcosis in fish. Appl Environ Microbiol 70(5):3183–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsusato T (1975) Bacterial tuberculoidosis of culture yellow tail. Proceedings of the Third U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, 15–16 October 1974. Special publication of fishery agency, Japanese Government and Japan Sea Regional Fisheries Research Laboratory

    Google Scholar 

  • McCarthy U, Steiropoulos NA, Thompson KD, Adams A, Ellis AE, Ferguson H (2005) Confirmation of Piscirickettsia salmonis as a pathogen in European seabass Dicentrarchus labrax and phylogenetic comparison with salmonid strains. Dis Aquat Organ 64:107–119

    Article  CAS  PubMed  Google Scholar 

  • Michel C, Faivre B, Kerouault B (1986) Biochemical identification of Lactobacillus strains from France and Belgium. Dis Aquat Organ 2:27–30

    Article  CAS  Google Scholar 

  • Mikalsen J, Colquhoun DJ (2009) Francisella asiatica sp. nov. isolated from farmed tilapia (Oreochromis sp.) and elevation of Francisella philomiragia subsp. noatunensis to species rank as Francisella noatunensis comb. nov., sp. nov. Int J Syst Evol Microbiol

    Google Scholar 

  • Mishra A, Nam GH, Gim JA, Lee HE, Jo A, Kim HS (2018) Current challenges of streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol Cells 41(6):495–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mudarris M, Austin B (1989) Systemic disease in turbot Scophthalmus maximus caused by a previously unrecognised Cytophaga-like bacterium. Dis Aquatic Organisms - Dis Aquat Org 6:161–166

    Article  Google Scholar 

  • Mudarris M, Austin B (1992) Histopathology of a gill and systemic disease of turbot (Scophthalmus maximus L.) caused by a Cytophaga-like bacterium. Bull Eur Assoc Fish Pathol 12:120–123

    Google Scholar 

  • Mudarris M, Austin B, Segers P, Vancanneyt M, Hoste B, Bernardet JF (1994) Flavobacterium scophthalmum sp. nov., a pathogen of turbot (Scophthalmus maximus L.). Int J Syst Bacteriol 44:447–453

    Article  CAS  PubMed  Google Scholar 

  • Muroga K, Iida M, Matsumoto H, Nakai T (1986a) Detection of vibrio anguillarum from waters. Bull Japan Soc Scient Fisher 52:64M47

    Google Scholar 

  • Muroga K, Yasuhiko J, Masumura K (1986b) Vibrio ordalii isolated from diseased ayu (Plecoglossus altivelis) and rockfish (Sebastes schlegeli). Fish Pathol 21:239–243

    Article  Google Scholar 

  • Nadirah M, Najiah M, Teng SY (2012) Characterization of edwardsiella tarda isolated from asian seabass, lates calcarifer. Int Food Res J 19(3):1247–1252

    CAS  Google Scholar 

  • Nelson EJ, Ghiorse WC (1999) Isolation and identification of Pseudoalteromonas piscicida strain Cura-d associated with diseased damselfish (Pomacentridae) eggs. J Fish Dis 22:253–260

    Article  Google Scholar 

  • Okamoto T, Maruyama A, Imura S, Takeyama H, Naganuma T (2004) Comparative phylogenetic analyses of Halomonas variabilis and related organisms based on 16S rRNA, gyrB and ectBC gene sequences. Syst Appl Microbiol 27:323–333

    Article  CAS  PubMed  Google Scholar 

  • Olsen AB, Birkbeck TH, Nilsen HK, MacPherson HL, Wangel C, Myklebust C, Laidler LA, Aarflot L, Thoen E, Nygård S, Thayumanavan T, Colquhoun DJ (2006a) Vaccine-associated systemic Rhodococcus erythropolis infection in farmed Atlantic salmon Salmo salar. Dis Aquat Organ 72(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Olsen AB, Melby HP, Speilberg L, Evensen O, Hastein T (1997) Piscirickettsia salmonis infection in Atlantic salmon Salmo salar in Norway – epidemiological, pathological and microbiological findings. Dis Aquat Organ 31:35–48

    Article  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006b) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    Article  CAS  PubMed  Google Scholar 

  • Ostland VE, LaTrace C, Morrison D, Ferguson HW (1999) Flexibacter maritimus associated with a bacterial stomatitis in Atlantic salmon smolts reared in net-pens in British Columbia. J Aquat Anim Health 11:35–44

    Article  Google Scholar 

  • Otte E (1963) Die heutigen Ansichten tiber die Atiologie der Infektiosen Bauchwassersucht der Karpfen. Wien Tieraertzl Monatsschr 50(11):996–1005

    Google Scholar 

  • Ottem KF, Nylund A, Karlsbakk E, Friis-Møller A, Kamaishi T (2009) Elevation of Francisella philomiragia subsp. noatunensis to Francisella noatunensis comb. nov. [syn. Francisella piscicida syn. nov.] and characterization of Francisella noatunensis subsp. orientalis subsp. nov. J Appl Microbiol 106(4):1231–1243

    Article  CAS  PubMed  Google Scholar 

  • Park YH, Suzuki K, Yim DG, Lee KC, Yoon J, Kim S, Kho YH, Goodfellow M, Komagata K (1993) Suprageneric classification of peptidoglycan group B actinomycetes by sequencing of 5S ribosomal RNA. Antonie Van Leeuwenhoek 64:307–313

    Article  CAS  PubMed  Google Scholar 

  • Pękala A, Paździor E, Antychowicz J, Bernad A, Głowacka H, Więcek B, Niemczuk W (2018) Kocuria rhizophila and Micrococcus luteus as emerging opportunistic pathogens in brown trout (Salmo trutta Linnaeus, 1758) and rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Aquaculture 486:285–289

    Article  Google Scholar 

  • Pękala-Safińska A (2018) Contemporary threats of bacterial infections in freshwater fish. J Vet Res 62:261–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Plumb JA, Vinitnantharat S (1993) Vaccination of channel catfish, Ictalurus punctatus (Rafinesque), by immersion and oral booster against Edwardsiella ictaluri. J Fish Dis 16(1):65–71

    Article  Google Scholar 

  • Pridgeon JW, Klesius PH (2012) Major bacterial diseases in aquaculture and their vaccine development CAB reviews: perspectives in agriculture. Veter Sci Nutr Nat Resour 2012:7

    Google Scholar 

  • Qian R, Xiao Z, Zheng L, Chu W, Mao Z, Yu L (2008) Expression and purification of two major outer membrane proteins from Vibrio alginolyticus. World J Microbiol Biotechnol 24:245–251

    Article  CAS  Google Scholar 

  • Rameshkumar P, Nazar AKA, Pradeep MA, Kalidas C, Jayakumar R, Tamilmani G, Sakthivel M, Samal AK, Sirajudeen S, Venkatesan V, Nazeera BM (2017) Isolation and characterization of pathogenic vibrio alginolyticus from sea cage cultured cobia (Rachycentron canadum (Linnaeus 1766)) in India. Lett Appl Microbiol 65(5):423–430

    Article  CAS  PubMed  Google Scholar 

  • Ransom DP (1978) Bacteriologic, immunologic and pathologic studies of vibrio spp. pathogenic to salmonids. Ph D. thesis. Oregon State University, Corvallis, p 123

    Google Scholar 

  • Ransom DP, Lannan CN, Rohovec JS, Fryer JL (1984) Comparison of histopathology caused by vibrio anguillarum and vibrio ordalii in three species of Pacific salmon. J Fish Dis 7:107–115

    Article  Google Scholar 

  • Rintamäki-Kinnunen P, Bernardet JF, Bloigu A (1997) Yellow pigmented filamentous bacteria connected with farmed salmonid fish mortality. Aquaculture 197(149):1–14

    Article  Google Scholar 

  • Roald SO, Hastein T (1980) Infection with an Acinetobacter-like bacterium in Atlantic Salmon (Salmo salar) Broodfish. In: Ahne W (ed) Fish diseases. Proceedings in life sciences. Springer, Berlin, Heidelberg

    Google Scholar 

  • Rogers WA (1981) Serological detection of two species of Edwurdsielfu infecting catfish. In: Anderson DP, Hennessen W (eds) International symposium in fish biologics: serodiagnostics and vaccines. Leetown, Karger, Basel, pp 169–172

    Google Scholar 

  • Romero J, Feijoo CG, Navarrete P (2012) Antibiotics in aquaculture—use, abuse and alternatives. In: Carvalho DG, Silva RJ (eds) Health and environment in aquaculture. Springer, Berlin, pp 159–198

    Google Scholar 

  • Saeed MO, Alamoudi MM, Al-Harbi AH (1987) A pseudomonas associated with disease in cultured rabbitfish Siganus rivulatus in the Red Sea. Dis Aquatic Org 3:177–180

    Article  Google Scholar 

  • Saeed MO, Plumb JA (1987) Serological detection of Edwardsiella ictaluri Hawke lipopolysaccharide antibody in serum of channel catfish, Ictalurus punctatus Rafinesque. J Fish Dis 10(3):205–209

    Article  CAS  Google Scholar 

  • Sakai M, Atsuta S, Kobayashi M (1989) Pseudomonas fluorescens isolated from the diseased rainbow trout, Oncorhynchus mykiss. Kitasato Arch Exp Med 62:157–162

    CAS  PubMed  Google Scholar 

  • Salati F, Cubadda C (2005) Viale I and Kusuda R (2005) immune response of sea bass Dicentrarchus labrax to Tenacibaculum maritimum antigens. Fish Sci 71:563–567

    Article  CAS  Google Scholar 

  • Salte R, Rorvik KA, Reed E, Norberg K (1994) Winter ulcers of the skin in Atlantic salmon, Salmo salar L.: pathogenesis and possible aetiology. J Fish Dis 17:661–665

    Article  Google Scholar 

  • Samad APA, Santoso U, Lee MC, Nan FH (2014) Effects of dietary katuk (Sauropus androgynus L. Merr.) on growth, non-specific immune and diseases resistance against vibrio alginolyticus infection in grouper Epinephelus coioides. Fish Shellfish Immunol 30:582–589

    Article  CAS  Google Scholar 

  • Schachte JH (1978) Immunization of channel catfish, Ictaluruspunctatus, against two bacterial diseases. Mar Fish Rev 40(3):18–19

    Google Scholar 

  • Schafer JW, Alvarado V, Enriquez R, Monras M (1990) The coho salmon syndrome (CSS): a new disease in Chilean salmon, reared in sea water. Bull Eur Assoc Fish Pathol 10:130

    Google Scholar 

  • Schäperclaus W (1979) Fischkrankheiten. Akademie, Berlin

    Google Scholar 

  • Shewan JM, Hobbs G, Hodgkiss WA (1960) Determinative scheme for the identification of certain genera of gram-negative bacteria, with special reference to the pseudomonadaceae. J Appl Bacteriol 23(3):379–390

    Article  Google Scholar 

  • Sigel MM, Hamby BA, Huggins EM (1986) Phylogenetic studies on lymphokines. Fish lymphocytes respond to human IL-1 and epithelial cells produce an IL-1 like factor. Vet Immunol Immunopathol 12(1–4):47–58

    Article  CAS  PubMed  Google Scholar 

  • Smith PA, Pizarro P, Ojeda P, Contreras J, Oyanedel S, Larenas J (1999) Routes of entry of Piscirickettsia salmonis in rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 37:165–172

    Article  CAS  PubMed  Google Scholar 

  • Soltani M, Munday BL, Burke CM (1996) The relative susceptibility of fish to infections by Flexibacter columnaris and Flexibacter maritimus. Aquaculture 140:259–264

    Article  Google Scholar 

  • Soto E, Fernandez D, Hawke J (2009) Attenuation of the fish pathogen Francisella sp. by mutation of the iglC gene. J Aquat Anim Health 21:140–149

    Article  PubMed  Google Scholar 

  • Soto E, Kidd S, Gaunt PS, Endris R (2012) Efficacy of florfenicol for control of mortality associated with Francisella noatunensis subsp. orientalis in Nile tilapia, Oreochromis niloticus (L.). J Fish Dis 36(4):411–418

    Article  PubMed  CAS  Google Scholar 

  • Soto E, Primus AE, Pouder DB, George RH, Gerlach TJ, Cassle SE, Yanong RP (2014) Identification of Francisella noatunensis in novel host species French grunt (Haemulon flavolineatum) and Caesar grunt (Haemulon carbonarium). J Zoo Wildl Med 45:727–731

    Article  PubMed  Google Scholar 

  • Soto E, Wiles J, Elzer P, Macaluso K, Hawke J (2011) Attenuated Francisella asiatica iglC mutant induces protective immunity to francisellosis in tilapia. Vaccine 29:593–598

    Article  CAS  PubMed  Google Scholar 

  • Speyerer PD, Boyle JA (1987) The plasmid profile of Edwardsiella ictaluri. J Fish Dis 1987(10):461–469

    Article  Google Scholar 

  • Srinivasa Rao PS, Lim TM, Leung KY (2003) Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect Immun 71:1343–1351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Stevenson LH (1978) A case for bacterial dormancy in aquatic systems. Microb Ecol 4:127–133

    Article  Google Scholar 

  • Sudheesh PS, Al-Ghabshi A, Al-Mazrooei N, Al-Habsi S (2012) Comparative pathogenomics of bacteria causing infectious diseases in fish. Int J Evol Biol 2012:457264

    Article  PubMed  PubMed Central  Google Scholar 

  • Suomalainen LR, Kunttu H, Valtonen ET, Hirvelä-Koski V, Tiirola M (2006b) Molecular diversity and growth features of Flavobacterium columnare strains isolated in Finland. Dis Aquat Organ 70:55–61

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen LR, Tiirola M, Valtonen ET (2006a) Chondroitin AC lyase activity is related to virulence in fish pathogenic Flavobacterium columnare. J Fish Dis 29:757–763

    Article  CAS  PubMed  Google Scholar 

  • Tanvir R, Suga K, Kanai K, Sugihara Y (2014) Biological and serological characterization of a non-gliding strain of Tenacibaculum maritimum isolated from a diseased puffer fish Takifugu rubripes. Fish Pathol 49(3):121–129

    Article  Google Scholar 

  • Toranzo AE. Report about fish bacterial diseases. In: Alvarez-Pellitero P, Barja JL, Basurco B, Berthe F, Toranzo AE (ed.). Mediterranean aquaculture diagnostic laboratories. Zaragoza: CIHEAM, 2004. p. 49–89

    Google Scholar 

  • Toranzo AE, Barreiro S, Casal JF, Figueras A, Magarinos B, Barja JL (1991) Pasteurellosis in cultured gilthead seabream (Sparus aurata): first report in Spain. Aquaculture 99:1–15

    Article  Google Scholar 

  • Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246:37–61

    Article  Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Steven SE, Ohwada K, Colwell RR (1998) A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378

    Article  CAS  PubMed  Google Scholar 

  • van Gelderen R, Carson J, Gudkovs N, Nowak BF (2010) Physical characterisation of Tenacibaculum maritimum for vaccine development. J Appl Microbiol 109:1668–1676

    PubMed  Google Scholar 

  • Van Gelderen R, Carson J, Nowak B (2009) Effect of extracellular products ofTenacibaculum maritimumin Atlantic salmon, Salmo salar L. J Fish Dis 32(8):727–731

    Article  PubMed  Google Scholar 

  • Vijayan KK, Sanil NK. Introduction to exotics and trans-boundary movement of aquatic organisms: policy requirements and relevance to Indian aquaculture in the post-WTO scenario. Manual on World Trade Agreements and Indian Fisheries Paradigms: A Policy Outlook. 2012; 121–131

    Google Scholar 

  • Wakabayashi H, Hikida M, Masumura K (1984) Flexibacter infection in cultured marine fish in Japan. Helgoländer Meeresuntersuchungen 37:587–593

    Google Scholar 

  • Wilson JW (2012) Nocardiosis: updates and clinical overview. Mayo Clin Proc 87(4):403–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter GW, Schreck CB, Mcintyre. (1980) Resistance of different stocks and transferrin genotypes of coho salmon, Oncorhynchus kisutch, and steelhead trout, Salmo gairdneri, to bacterial kidney disease and vibriosis. Natl Mar Fish Servo Fish Bull 77(4):795–802

    Google Scholar 

  • Xu J, Zeng X, Jiang N, Zhou Y, Zeng L (2015) Pseudomonas alcaligenes infection and mortality in cultured Chinese sturgeon, Acipenser sinensis. Aquaculture 446

    Google Scholar 

  • Xu Z, Wang Y, Han Y, Chen J, Zhang XH (2011) Mutation of a novel virulence-related gene mltD in Vibrio anguillarum enhances lethality in zebrafish. Res Microbiol 162:144–150

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Marston L, Patrick A, Michael IL, Lambert ND, Cy AS, Cary NR, Renata L, Berton Z (1989) Genetic changes in human adrenocortical carcinomas. JNCI: J Nat Cancer Inst 81(7):518–519

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Ma Y, Liu Q, Zhao DL, Wang QY, Zhang YX (2008) Regulation of vibrio alginolyticus virulence by the LuxS quorum-sensing system. J Fish Dis 31(3):161–169

    Article  CAS  PubMed  Google Scholar 

  • Yeh HY, Shoemaker CA, Klesius PH (2006) Sensitive and rapid detection of Flavobacterium columnare in channel catfish Ictalurus punctatus by a loop-mediated isothermal amplification method. J Appl Microbiol 100:919–925

    Article  CAS  PubMed  Google Scholar 

  • Zerihun MA, Feist SW, Bucke D, Olsen AB, Tandstad NM, Colquhoun D (2011) Francisella noatunensis subsp.noatunensis is the aetiological agent of visceral granulomatosis in wild Atlantic cod Gadus morhua. Dis Aquat Organ 95:65–71

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varalakshmi, B. et al. (2022). Bacterial Fish Diseases and Treatment. In: Balasubramanian, B., Liu, WC., Sattanathan, G. (eds) Aquaculture Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-0817-0_19

Download citation

Publish with us

Policies and ethics