Skip to main content

Fabrication of Highly Oriented Piezoelectric Nanofibers Using a Low Cost and Lab-Scale Electrospinning System

  • Conference paper
  • First Online:
Advances in Mechanical Engineering and Material Science (ICAMEMS 2022)

Abstract

A large number of piezoelectric polymers have been studied and applied widely recently and become an attractive topic in both material science and applied engineering fields. Piezoelectric polymers such as Poly(vinyl fluoride) and Poly(γ-benzyl, L-glutamate) fabricated in nanofibers have shown impressive properties in the aspect of low weight, high flexibility and high piezoelectricity. One of the major parameters influencing to the piezoelectricity of electrospun fibers is the orientation. This paper reviews the contribution of fiber orientation to the piezoelectricity properties and the technique to manipulate the orientation. The research group introduces for the first time a fully integrated and compact electrospinning system which is low cost and suitable for both lab-scale and large-scale purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azimi, B., Maleki, H., Zavagna, L., De la Ossa J.G., Linari, S., Lazzeri, A., Danti, S.: Bio-based electrospun fibers for wound healing. JFB 11(3), 67 (2020)

    Google Scholar 

  2. Azimi, B., Milazzo, M., Lazzeri, A., Berrettini, S., Uddin, M.J., Qin, Z., Buehler, M.J., Danti, S: Electrospinning piezoelectric fibers for biocompatible devices. Adv. Healthcare Mater. 9(1), 1901287 (2019)

    Google Scholar 

  3. Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., Bakenov, Z.: A review of piezoelectric PVDF film by electrospinning and its applications. Sensors 20(18), 5214 (2020)

    Google Scholar 

  4. Khadka, D.B., Donald, M.S., Haynie, T.: Protein- and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine 8(8), 1242–1462 (2012)

    Article  Google Scholar 

  5. Mokhtari, F., Shamshirsaz, M., Latifi, M., Foroughi, J.: Nanofibers-based piezoelectric energy harvester for self-powered wearable technologies. Polymers 12(11), 2697 (2020)

    Google Scholar 

  6. Huang, Y.A., Ding, Y., Bian, J., Su, Y., Zhou, J., Duan, Y., Yin, Z.: Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 40, 432–439 (2017)

    Article  Google Scholar 

  7. Lang, C., Fang, J., Shao, H., Ding, X., Lin, T.: High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7 (2016)

    Google Scholar 

  8. Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., Huang, Y., Rogers, J.A.: High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4 (2013)

    Google Scholar 

  9. Filippin, A.N., Sanchez-Valencia, J.R., Garcia-Casas, X., Lopez-Flores, V., Macias-Montero, M., Frutos, F., Barranco, A., Borrasa, A.: 3D core-multishell piezoelectric nanogenerators. Nano Energy 58, 476–483 (2019)

    Article  Google Scholar 

  10. Ren, G., Cai, F., Li, B., Zheng, J., Xu, C.: Flexible pressure sensor based on a Poly(VDF-TrFE) nanofiber web. Macromol. Mater. Eng. 298(5), 541–546 (2013)

    Article  Google Scholar 

  11. Nguyen, D.-N., Moon, W.: Piezoelectric polymer microfiber‐based composite for the flexible ultra‐sensitive pressure sensor. J. Appl. Polym. Sci. 137(29), 48884 (2019)

    Google Scholar 

  12. Nguyen, D.-N., Yu, S.M., Moon, W.: Electrospinning of poly(γ-benzyl-α,L-glutamate) microfibers for piezoelectric polymer applications. J. Appl. Polym. Sci. 135(27), 46440 (2018)

    Google Scholar 

  13. Farrar, D., Ren, K., Cheng, D., Kim, S., Moon, W., Wilson, W.L., West, J.E., Yu, S.M.: Permanent polarity and piezoelectricity of electrospun alpha-helical poly(alpha-amino acid) fibers. Adv. Mater. 23(34) (2011)

    Google Scholar 

  14. Nguyen, D.N., Moon, W.: Fabrication and characterization of a flexible PVDF fiber-based polymer composite for high-performance energy harvesting devices. Journal of Sensor Science and Technology 28(4), 205–215 (2019)

    Google Scholar 

  15. Lee, Y.-S., Collins, G., Arinzeh, T.L.: Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater. 7(11), 3877–3886 (2011)

    Article  Google Scholar 

  16. Wu, S., Chen, M.-S., Maurel, P., Lee, Y.-S., Bunge, M.B., Arinzeh, T.L.: Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. J. Neural Eng. 15(5), 056010 (2018)

    Google Scholar 

  17. Reneker, D.H., Yarin, A.L.: Electrospinning jets and polymer nanofibers. Polymer 49(10), 2387–2425 (2008)

    Article  Google Scholar 

  18. Lei, T., Peng, Q., Chen, Q., Xiong, J., Zhang, F., Sun, D.: Alignment of electrospun fibers using the whipping instability. Mater. Lett. 193, 248–250 (2017)

    Article  Google Scholar 

  19. Zussman, E., Theron, A., Yarin, A.L.: Formation of nanofiber crossbars in electrospinning. Appl. Phys. Lett. 82(6), 973–975 (2003)

    Article  Google Scholar 

  20. Yan, H., Liu, L., Zhang, Z.: Alignment of electrospun nanofibers using dielectric materials. Appl. Phys. Lett. 95(14), 143114 (2009)

    Google Scholar 

  21. Kiselev, P., Rosell-Llompart, J.: Highly aligned electrospun nanofibers by elimination of the whipping motion. J. Appl. Polym. Sci. 125(3), 2433–2441 (2012)

    Article  Google Scholar 

  22. Nguyen, D.-N., Hwang, Y., Moon, W.: Electrospinning of well-aligned fiber bundles using an end-point control assembly method. Eur. Polymer J. 77, 54–64 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Nam Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, DN., Nguyen, VT., Dam, IH., Vu, VH. (2022). Fabrication of Highly Oriented Piezoelectric Nanofibers Using a Low Cost and Lab-Scale Electrospinning System. In: Popat, K.C., Kanagaraj, S., Sreekanth, P.S.R., Kumar, V.M.R. (eds) Advances in Mechanical Engineering and Material Science. ICAMEMS 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-0676-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0676-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0675-6

  • Online ISBN: 978-981-19-0676-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics