Skip to main content

A Comparative Performance Model of Machine Learning Classifiers on Time Series Prediction for Weather Forecasting

  • 278 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 392)

Abstract

Machine learning is a booming technical term in every domain of research. The majority of the technical concepts sounds to accomplish classification task in a real-life scenario. In the literature, the huge number of classification tools, it becomes very necessary to justify the performance of machine learning classifiers. This paper describes four classification techniques that are successfully applied for the prediction of the two most significant features for weather forecasting temperature and relative humidity (RH). A brief introduction of the proposed model with four prediction methodologies—ARMA, MLP, SVM and ELANFIS—follows the discriminate ideas that can create the space for such research. The techniques are then compared on a public data set containing the time series of the two parameters: temperature and relative humidity. As per the data statistics, the parameters are registered on an hourly basis and recorded over a field in an Italian city. An elaborating analysis of the results is performed to provide insights into the satisfactory performance of the models.

Keywords

  • Time series prediction
  • Weather forecasting
  • Support vector machine (SVM)
  • Multi-layer perceptron (MLP)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-19-0619-0_50
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-19-0619-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adhikari, R., Agrawal, R.K.: An introductory study on time series modeling and forecasting (2013). arXiv:1302.6613

  2. Ajil, K.S., Thapliyal, P.K., Shukla, M.V., Pal, P.K., Joshi, P.C., Navalgund, R.R.: A new technique for temperature and humidity profile retrieval from infrared-sounder observations using the adaptive neuro-fuzzy inference system. IEEE Trans. Geosci. Remote Sens. 48(4), 1650–1659 (2010)

    CrossRef  Google Scholar 

  3. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    CrossRef  Google Scholar 

  4. Daneshmand, H., Tavousi, T., Khosravi, M., Tavakoli, S.: Modeling minimum temperature using adaptive neuro-fuzzy inference system based on spectral analysis of climate indices: A case study in iran. J. Saudi Society Agric. Sci. 14(1), 33–40 (2015)

    Google Scholar 

  5. Dua, D., Graff, C., et al.: Uci machine learning repository (2017)

    Google Scholar 

  6. Fan, Y., Li, P., Song, Z.: Dynamic least squares support vector machine. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp. 4886–4889. IEEE (2006)

    Google Scholar 

  7. Hamzaçebi, C.: Improving artificial neural networks-performance in seasonal time series forecasting. Inf. Sci. 178(23), 4550–4559 (2008)

    CrossRef  Google Scholar 

  8. Hipel, K.W., McLeod, A.I.: Time series modelling of water resources and environmental systems. Elsevier (1994)

    Google Scholar 

  9. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    CrossRef  Google Scholar 

  10. Jang, J.S.: Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    CrossRef  Google Scholar 

  11. Kumar, N.: Better performance in human action recognition from spatiotemporal depth information features classification. In: Computational Network Application Tools for Performance Management, pp. 39–51. Springer (2020)

    Google Scholar 

  12. Kumar, N.: Recent issues with machine vision applications for deep network architectures. In: Cognitive Computing Systems, pp. 267–284. Apple Academic Press (2021)

    Google Scholar 

  13. Li, G., Shi, J.: On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 87(7), 2313–2320 (2010)

    CrossRef  Google Scholar 

  14. Martínez-Martínez, V., Baladrón, C., Gomez-Gil, J., Ruiz-Ruiz, G., Navas-Gracia, L.M., Aguiar, J.M., Carro, B.: Temperature and relative humidity estimation and prediction in the tobacco drying process using artificial neural networks. Sensors 12(10), 14004–14021 (2012)

    CrossRef  Google Scholar 

  15. Mohammadi, K., Shamshirband, S., Motamedi, S., Petković, D., Hashim, R., Gocic, M.: Extreme learning machine based prediction of daily dew point temperature. Comput. Electron. Agric. 117, 214–225 (2015)

    CrossRef  Google Scholar 

  16. Rojas, I., Valenzuela, O., Rojas, F., Guillén, A., Herrera, L.J., Pomares, H., Marquez, L., Pasadas, M.: Soft-computing techniques and ARMA model for time series prediction. Neurocomputing 71(4–6), 519–537 (2008)

    CrossRef  Google Scholar 

  17. Shamshirband, S., Mohammadi, K., Chen, H.L., Samy, G.N., Petković, D., Ma, C.: Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: a case study for Iran. J. Atmos. Solar-Terrestrial Phys. 134, 109–117 (2015)

    CrossRef  Google Scholar 

  18. Suryono, S., Saputra, R., Surarso, B., Sukri, H.: Web-based fuzzy time series for environmental temperature and relative humidity prediction. In: 2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), pp. 36–41. IEEE (2017)

    Google Scholar 

  19. Zhou, S., Chu, X., Cao, S., Liu, X., Zhou, Y.: Prediction of the ground temperature with ann, ls-svm and fuzzy ls-svm for gshp application. Geothermics 84, 101757 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sharma, S., Bhatt, K.K., Chabra, R., Aneja, N. (2022). A Comparative Performance Model of Machine Learning Classifiers on Time Series Prediction for Weather Forecasting. In: Goar, V., Kuri, M., Kumar, R., Senjyu, T. (eds) Advances in Information Communication Technology and Computing. Lecture Notes in Networks and Systems, vol 392. Springer, Singapore. https://doi.org/10.1007/978-981-19-0619-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0619-0_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0618-3

  • Online ISBN: 978-981-19-0619-0

  • eBook Packages: EngineeringEngineering (R0)