Skip to main content

Comparative Study on the NOMA Based Optimum Power Allocation Using DLS Algorithm with DNN

  • Conference paper
  • First Online:
Advances in Information Communication Technology and Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 392))

  • 572 Accesses

Abstract

High throughput, successive interference cancelation, higher cell edge spectrum efficiency, and low latency are the main requirements for future generation technology. Non-orthogonal multiple access (NOMA) technology offers a scale of the multiple numbers of users (multiplexing), extremely high spectral efficiency, greater improvements in user pairing and more than one user shares single resource block; hence, it is a superior technology than orthogonal multiple access schemes (OMA). NOMA-based optimum power allocation, first by using direct techniques and then using (depth limited search) DLS algorithm with (deep neural network) DNN is studied in this research paper. These techniques are first applied to two users and then extended to multi-user communications. Distributing optimum power to the weaker user (who are not getting proper signal strength) is a challenging task and to add to it successive interference cancelation (SIC) also brings difficulty in the proper distribution of source power from a base station. In this work, we try to solve this problem with the help of DLS algorithm with DNN, where optimum power is allocated to the weaker user and minimum power is allocated to the stronger user. Here, the DLS algorithm-based DNN-NOMA technology assists to decode the user without interference, with more accuracy in real-time. DLS algorithm provides greater potential in DNN-NOMA technology by the successful application of successive interference cancelation (SIC). A DLS predicts the position of user equipment and provides the optimum power allocation. In our proposed work, performance is improved compared to the previous existing conventional multi-user case. In the case of multi-user communication, optimum power allocation capacity to the weaker user is very less compared to the two-user case optimum power allocation NOMA. Through the application of the DLS algorithm and DNN, optimum power allocation capacity for the weaker user is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islam, S.M.R., Avazov, N., Dobre, O.A., Kwak, K.S.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2017). https://doi.org/10.1109/COMST.2016.2621116

    Article  Google Scholar 

  2. Ding, Z., Adachi, F., Poor, H.V.: The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wireless Commun. 15(1), 537–552 (2016). https://doi.org/10.1109/TWC.2015.2475746

    Article  Google Scholar 

  3. Yao, H., Wang, L., Wang, X., Lu, Z., Liu, Y.: The space-terrestrial integrated network: an overview. IEEE Commun. Mag. 56(9), 178–185 (2018). https://doi.org/10.1109/MCOM.2018.1700038

    Article  Google Scholar 

  4. Wang, P., Xiao, J., Ping, L.: Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Veh. Technol. Mag. 4–11 (2006)

    Google Scholar 

  5. Wei, Z., Yuan, J., Ng, D.W.K., Elkashlan, M., Ding, Z. : A Survey of Downlink Non-orthogonal Multiple Access for 5G Wireless Communication Networks, pp. 1–17(2016). http://arxiv.org/abs/1609.01856

  6. Al Khansa, A., Chen, X., Yin, Y., Gui, G., Sari, H.: Performance analysis of power-Domain NOMA and NOMA-2000 on AWGN and Rayleigh fading channels. Phys. Commun. 43, 101185 (2020)

    Google Scholar 

  7. Manglayev, T., Kizilirmak, R.C., Kho, Y.H. : Optimum power allocation for non-orthogonal multiple access (NOMA).In: Application of Information and Communication Technologies, AICT 2016—Conference Proceedings, pp. 5–8. IEEE, Baku (2016) https://doi.org/10.1109/ICAICT.2016.7991730

  8. Selim, B., Muhaidat, S., Sofotasios, P. C., Al-dweik, A., Sharif, B.S., Stouraitis, T. : Radio Frequency Front-End Impairments in Non-Orthogonal Multiple Access Systems (2018)

    Google Scholar 

  9. J, C., Z, H., R, Y., H, Z., C, K., H, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Comm. 24(2), 98–105 (2016)

    Google Scholar 

  10. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  11. Xu, Y.H., Tian, Y.B., Searyoh, P.K., Yu, G., Yong, Y.T.: Deep reinforcement learning-based resource allocation strategy for energy harvesting-powered cognitive machine-to-machine networks. Comput. Commun. 160(5), 706–717 (2020)

    Google Scholar 

  12. Zappone, A., Di Renzo, M., Debbah, M.: Wireless networks design in the era of deep learning: model-based, ai-based, or both? IEEE Trans. Commun. 67(10), 7331–7376 (2019). https://doi.org/10.1109/TCOMM.2019.2924010

    Article  Google Scholar 

  13. Balcı, A., Sokullu, R.: Massive connectivity with machine learning for the Internet of Things. Comput. Netw. 184(7), 107646 (2021). https://doi.org/10.1016/j.comnet.2020.107646

  14. Farsad, N., Goldsmith, A.: Neural network detection of data sequences in communication systems. IEEE Trans. Signal Process. 66(21), 5663–5678 (2018). https://doi.org/10.1109/TSP.2018.2868322

    Article  MathSciNet  MATH  Google Scholar 

  15. Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Process. Mag. 38(2), 18–44 (2021). https://doi.org/10.1109/MSP.2020.3016905

    Article  Google Scholar 

  16. Kang, J.M., Kim, I.M., Chun, C.J.: Deep learning-based MIMO-NOMA with imperfect SIC decoding. IEEE Syst. J. 14(3), 3414–3417 (2020). https://doi.org/10.1109/JSYST.2019.2937463

    Article  Google Scholar 

  17. Sanguinetti, L., Zappone, A., Debbah, M.: Deep learning power allocation in massive MIMO. In: Conference Record—Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 1257–1261. IEEE (2018). https://doi.org/10.1109/ACSSC.2018.8645343

  18. Kim, K.G.: Book review: deep learning. Healthc. Inf. Res. 22(4), 351–354.NCBI, Cambridge university (2016). https://doi.org/10.4258/hir.2016.22.4.351

  19. Sun, Y., Wang, Y., Jiao, J., Wu, S., Zhang, Q.: Deep learning-based long-term power allocation scheme for NOMA downlink system in S-IoT. IEEE Access 7, 86288–86296 (2019). https://doi.org/10.1109/ACCESS.2019.2926426

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

For ‘i’ user’s data rate is

$$ \log_2 (1 + a_i \rho_s \beta_i ) + \cdots + \log_2 \left( {1 + \frac{a_1 \rho_s \beta_1 }{{\sum_{l = 1}^i {a_i \rho_s \beta_1 } + 1}}} \right) $$
(16)

If assume i = 2

$$ \log_2 (1 + a_i \rho_s \beta_i ) + \cdots + \log_2 \left( {1 + \frac{a_1 \rho_s \beta_1 }{{\sum_{l = 1}^i {a_i \rho_s \beta_1 } + 1}}} \right) = {\text{sum}} $$
(17)

To find, function dependent values from the above function

$$ \log_2 \left( {1 + \frac{a_1 \rho_s \beta_1 }{{a_2 \rho_s \beta_1 + 1}}} \right) \cdot (a_2 \rho_s \beta_1 + 1) $$
(18)

The Sum of the power coefficient is one

$$ a_2 = - a_1 + 1 $$
(19)

Substitute a2 in Eq. (18)

$$ \log_2 \left( {1 + \frac{a_1 \rho_s \beta_1 }{{( - a_1 + 1)\rho_s \beta_1 + 1}}} \right) \cdot (( - a_1 + 1)\rho_s \beta_2 + 1) $$
(20)
$$ \log_2 (1 + \rho_s \beta_1 ).\frac{(( - a_1 + 1)\rho_s \beta_2 + 1)}{{(( - a_1 + 1)\rho_s \beta_1 + 1)}} $$
(21)

\(1 + \rho_s \beta_1\) is constant

$$ \frac{{\frac{1}{a_1 } + \frac{\rho_s \beta_2 }{{a_1 }} - \frac{\rho_s \beta_2 }{1}}}{{\frac{1}{a_1 } + \frac{\rho_s \beta_1 }{{a_1 }} - \frac{\rho_s \beta_1 }{1}}} $$
(22)

From Eq. (22), if, a1 = 0 then function becomes invalid, so apply L—‘Hospital’s rule, to make function valid.

Apply partial derivation above and below.

$$ \frac{{\frac{1}{a_1^2 } - \frac{\rho_s \beta_2 }{{a_1^2 }} - 0}}{{\frac{1}{a_1^2 } - \frac{\rho_s \beta_1 }{{a_1^2 }} - 0}} $$
(23)
$$ \frac{1 - \rho_s \beta_2 }{{1 - \rho_s \beta_1 }} $$
(24)

To make the function maximum, consider β2 minimum and β1maximum.

To find, a1max from the data rate function. Assume data rate is greater than or equal to R1

$$ \log_2 (1 + r_{x_1 }^{u_1 } ) \ge R_1 $$
(25)
$$ 1 + r_{{x_{1} }}^{{u_{1} }} \cong 2^{{R_{1} }} = \hat{R}_{1} $$
(26)

From Eq. (17)

$$ a_1 \rho_s \beta_1 + \hat{R}_1 a_1 \rho_s \beta_1 = \hat{R}_1 (1 + a_1 \rho_s \beta_1 ) $$
(27)
$$ a_{1\max } \ge \frac{{\hat{R}_{1} (1 + a_1 \rho_s \beta_1 )}}{{\beta_1 \rho_s (1 +\hat{R}_{1} )}} $$
(28)

Similarly, from the ‘i’ users

$$ \log_2 \left( {1 + \frac{a_1 \rho_s \beta_1 }{{\sum_{l = 1}^{i - 1} {a_i \rho_s \beta_1 } + 1}}} \right) $$
(29)
$$ 1 + r_{x_1 }^{u_1 } \cong 2^{R_1 } = \hat{R}_1 $$
(30)
$$ \frac{a_1 \rho_s \beta_1 }{{\sum_{l = 1}^{i - 1} {a_i \rho_s \beta_1 } + 1}} = R_1 - 1 = \hat{R}_1 $$
(31)

The Sum of the power coefficient is one, so

$$ \sum_{l = 2}^i {a_l \cong 1} $$
(32)
$$ \frac{a_1 \rho_s \beta_1 }{{\rho_s \beta_1 + 1}} = R_1 - 1 = \hat{R}_1 $$
(33)
  1. 1.

    From the Eq. (28) a1max is

    $$ a_{1\max } \ge \frac{{\hat{R}_1 (\rho_s \beta_1 + 1) - 1}}{\beta_1 \rho_s } $$
    (34)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravi, M., Bulo, Y. (2022). Comparative Study on the NOMA Based Optimum Power Allocation Using DLS Algorithm with DNN. In: Goar, V., Kuri, M., Kumar, R., Senjyu, T. (eds) Advances in Information Communication Technology and Computing. Lecture Notes in Networks and Systems, vol 392. Springer, Singapore. https://doi.org/10.1007/978-981-19-0619-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0619-0_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0618-3

  • Online ISBN: 978-981-19-0619-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics