Skip to main content

Aerobic/Anaerobic Membrane Bioreactor in Textile Wastewater

  • Chapter
  • First Online:
Biological Approaches in Dye-Containing Wastewater

Abstract

Textile wastewater is typical industrial wastewater that can lead to serious environmental problems if discharged without treatment. Thus, it is meaningful for developing the treatment processes for textile wastewater. At present, many common biological methods are available for the textile wastewater treatment, including activated sludge, granular sludge, membrane bioreactors (MBR), the up-flow anaerobic sludge blanket, sequential batch reactors, and so on. This chapter focuses on the use of MBRs for treating textile wastewater. We reviewed key parameters that had effects on the treatment performance, the enhanced strategies for MBRs treatment and the application of MBRs in pilot-scale and full-scale. With the optimal key parameters, pollutant removal performance could obtain high level with the removal efficiencies of more than 90% for organic matters, dye, and total nitrogen, and 100% for suspended solid. Moreover, some typical membrane cleaning methods were introduced to address the membrane fouling. For achieving a sustainable flux operation, anti-fouling strategies for operational MBRs were explained. Besides, studies related to the microbial community in the biological treatment of textile wastewater were described, and the status of the analysis of microorganisms in the treatment of textile wastewater with MBRs was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A2O:

Anaerobic anoxic oxic

ABR:

Anoxic baffled reactor

AeMBR:

Aerobic membrane bioreactor

AnMBR:

Anaerobic membrane bioreactor

ASR:

Assimilatory sulfate reduction

BOD:

Biochemical oxygen demand

CFV:

Cross-flow velocity

COD:

Chemical oxygen demand

DSR:

Dissimilatory sulfate reduction

EPS:

Extracellular polymeric substance

GO:

Graphene oxides

GPC:

Gel permeation chromatography

HRT:

Hydraulic retention time

HUs:

Hazen units

MBR:

Membrane bioreactor

MF:

Microfiltration

NF:

Nanofiltration

PACl:

Poly-aluminum chloride

PES:

Polyethersulfone resin

PP:

Polypropylene

PSU:

Polysulfone

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene difluoride

RO:

Reverse osmosis

SEM:

Scanning electron microscopy

SMP:

Soluble microbial product

SRT:

Sludge retention time

TDS:

Total dissolved solids

TKN:

Total kjeldahl nitrogen

TN:

Total nitrogen

TP:

Total phosphorus

TSS:

Total suspended solids

UASB:

Up-flow anaerobic sludge blanket

UF:

Ultrafiltration

VFAs:

Volatile fatty acids

WO3:

Tungsten oxide

References

  1. Ahmad AL, Abdulkarim AA, Ooi BS, Ismail S (2013) Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 223:246–267. https://doi.org/10.1016/j.cej.2013.02.130

    Article  CAS  Google Scholar 

  2. Al-Ghamdi MA, Alhadidi A, Ghaffour N (2019) Membrane backwash cleaning using CO2 nucleation. Water Res 165, 114985.https://doi.org/10.1016/j.watres.2019.114985

  3. Alibeigi-Beni S, Habibi Zare M, Pourafshari Chenar M, Sadeghi M, Shirazian S (2021) Design and optimization of a hybrid process based on hollow-fiber membrane/coagulation for wastewater treatment. Environ Sci Pollut Res 28:8235–8245. https://doi.org/10.1007/s11356-020-11037-y

    Article  CAS  Google Scholar 

  4. Alinsafi A, Evenou F, Abdulkarim EM, Pons M-N, Zahraa O, Benhammou A, Yaacoubi A, Nejmeddine A (2007) Treatment of textile industry wastewater by supported photocatalysis. Dye Pigment 74:439–445

    Article  CAS  Google Scholar 

  5. An Y, Wu B, Wong FS, Yang F (2010) Post-treatment of upflow anaerobic sludge blanket effluent by combining the membrane filtration process: fouling control by intermittent permeation and air sparging. Water Environ J 24:32–38. https://doi.org/10.1111/j.1747-6593.2008.00152.x

    Article  CAS  Google Scholar 

  6. Aslam M, Charfi A, Lesage G, Heran M, Kim J (2017) Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling. Chem Eng J 307:897–913. https://doi.org/10.1016/j.cej.2016.08.144

    Article  CAS  Google Scholar 

  7. Bai R, Leow HF (2002) Microfiltration of activated sludge wastewater—the effect of system operation parameters. Sep Purif Technol 29:189–198. https://doi.org/10.1016/S1383-5866(02)00075-8

    Article  CAS  Google Scholar 

  8. Balapure KH, Jain K, Chattaraj S, Bhatt NS, Madamwar D (2014) Co-metabolic degradation of diazo dye-Reactive blue 160 by enriched mixed cultures BDN. J Hazard Mater 279:85–95. https://doi.org/10.1016/j.jhazmat.2014.06.057

    Article  CAS  Google Scholar 

  9. Bennett A (2005) Membranes in industry: facilitating reuse of wastewater. Filtr Sep 42:28–30. https://doi.org/10.1016/S0015-1882(05)70658-3

    Article  CAS  Google Scholar 

  10. Bharti V, Vikrant K, Goswami M, Tiwari H, Sonwani RK, Lee J, Tsang DCW, Kim KH, Saeed M, Kumar S, Rai BN, Giri BS, Singh RS (2019) Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environ Res 171:356–364. https://doi.org/10.1016/j.envres.2019.01.051

    Article  CAS  Google Scholar 

  11. Bilici Z, Unal BO, Ozay Y, Keskinler B, Karagunduz A, Orhon D, Dizge N (2020) Effluent reuse potential of a dual-stage ceramic mbr coupled wiro treatment for textile wastewater. Desalin Water Treat 177:374–383. https://doi.org/10.5004/dwt.2020.25006

    Article  CAS  Google Scholar 

  12. Brepols C, Dorgeloh E, Frechen F-B, Fuchs W, Haider S, Joss A, de Korte K, Ruiken C, Schier W, van der Roest H (2008) Upgrading and retrofitting of municipal wastewater treatment plants by means of membrane bioreactor (MBR) technology. Desalination 231:20–26

    Article  CAS  Google Scholar 

  13. Brik M, Schoeberl P, Chamam B, Braun R, Fuchs W (2006) Advanced treatment of textile wastewater towards reuse using a membrane bioreactor. Process Biochem 41:1751–1757. https://doi.org/10.1016/j.procbio.2006.03.019

    Article  CAS  Google Scholar 

  14. Carvalho JRS, Amaral FM, Florencio L, Kato MT, Delforno TP, Gavazza S (2020) Microaerated UASB reactor treating textile wastewater: the core microbiome and removal of azo dye Direct Black 22. Chemosphere 242:125157.https://doi.org/10.1016/j.chemosphere.2019.125157

  15. Cerón-Vivas A, Morgan-Sagastume JM, Noyola A (2012) Intermittent filtration and gas bubbling for fouling reduction in anaerobic membrane bioreactors. J. Memb. Sci. 423–424:136–142. https://doi.org/10.1016/j.memsci.2012.08.008

    Article  CAS  Google Scholar 

  16. Chen W, Mo J, Du X, Zhang Z, Zhang W (2019) Biomimetic dynamic membrane for aquatic dye removal. Water Res 151:243–251. https://doi.org/10.1016/j.watres.2018.11.078

    Article  CAS  Google Scholar 

  17. Cheng J, Wu X, Jin B, Zhang C, Zheng R, Qin L (2021) Coupling of immobilized photosynthetic bacteria with a graphene oxides/PSF composite membrane for textile wastewater treatment: biodegradation performance and membrane anti-fouling behavior. Membranes (Basel) 11.https://doi.org/10.3390/membranes11030226

  18. Ching KF (2010) Design and operation of MBR type sewage treatment plant at Lo Wu Correctional Institution , Hong Kong

    Google Scholar 

  19. Chittal V, Gracias M, Anu A, Saha P, Bhaskara Rao KV (2019) Biodecolorization and biodegradation of azo dye reactive orange-16 by marine nocardiopsis sp. Iran. J Biotechnol 17:18–26. https://doi.org/10.29252/ijb.1551

  20. Choudhury AKR (2017) 10—Sustainable chemical technologies for textile production. In: Muthu SS (Ed), Sustainable fibres and textiles, the textile institute book series. Woodhead Publishing, pp 267–322. https://doi.org/10.1016/B978-0-08-102041-8.00010-X

  21. De Jager D, Sheldon MS, Edwards W (2014) Colour removal from textile wastewater using a pilot-scale dual-stage MBR and subsequent RO system. Sep Purif Technol 135:135–144. https://doi.org/10.1016/j.seppur.2014.08.008

    Article  CAS  Google Scholar 

  22. Doğruel S, Altun A, Çokgör EU, Insel G, Keskinler B, Orhon D (2021) Anatomy of the organic carbon in an industrial wastewater: implications of particle size distribution, respirometry and process modelling. Process Saf Environ Prot 146:257–266. https://doi.org/10.1016/j.psep.2020.09.002

    Article  CAS  Google Scholar 

  23. Dow N, Villalobos García J, Niadoo L, Milne N, Zhang J, Gray S, Duke M (2017) Demonstration of membrane distillation on textile waste water assessment of long term performance, membrane cleaning and waste heat integration. Environ Sci Water Res Technol 3:433–449. https://doi.org/10.1039/c6ew00290k

    Article  CAS  Google Scholar 

  24. Feng F, Xu Z, Li X, You W, Zhen Y (2010) Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process. J Environ Sci 22:1657–1665. https://doi.org/10.1016/S1001-0742(09)60303-X

    Article  CAS  Google Scholar 

  25. Feng S, Zhong Z, Wang Y, Xing W, Drioli E (2018) Progress and perspectives in PTFE membrane: preparation, modification, and applications. J. Memb. Sci. 549:332–349. https://doi.org/10.1016/j.memsci.2017.12.032

    Article  CAS  Google Scholar 

  26. Field RW, Pearce GK (2011) Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv Colloid Interface Sci 164:38–44. https://doi.org/10.1016/j.cis.2010.12.008

    Article  CAS  Google Scholar 

  27. Friha I, Bradai M, Johnson D, Hilal N, Loukil S, Ben Amor F, Feki F, Han J, Isoda H, Sayadi S (2015) Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. J Environ Manage 160:184–192. https://doi.org/10.1016/j.jenvman.2015.06.008

    Article  CAS  Google Scholar 

  28. Gita S, Hussan A, Choudhury TG (2017) Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35:2349–2353

    Google Scholar 

  29. Grilli S, Piscitelli D, Mattioli D, Casu S, Spagni A (2011) Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration. J Environ Sci Heal Part A Toxic/Hazardous Subst. Environ Eng 46:1512–1518. https://doi.org/10.1080/10978526.2011.609078

    Article  CAS  Google Scholar 

  30. Guadie A, Gessesse A, Xia S (2018) Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake. Chemosphere 206:59–69. https://doi.org/10.1016/j.chemosphere.2018.04.134

    Article  CAS  Google Scholar 

  31. Guo W, Ngo HH, Li J (2012) A mini-review on membrane fouling. Bioresour Technol 122:27–34. https://doi.org/10.1016/j.biortech.2012.04.089

    Article  CAS  Google Scholar 

  32. Hai FI, Yamamoto K, Nakajima F, Fukushi K (2011) Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment. Water Res 45:2199–2206. https://doi.org/10.1016/j.watres.2011.01.013

    Article  CAS  Google Scholar 

  33. Hai FI, Yamamoto K, Nakajima F, Fukushi K (2008) Removal of structurally different dyes in submerged membrane fungi reactor-Biosorption/PAC-adsorption, membrane retention and biodegradation. J Memb Sci 325:395–403. https://doi.org/10.1016/j.memsci.2008.08.006

    Article  CAS  Google Scholar 

  34. Hoinkis J, Deowan SA, Panten V, Figoli A, Huang RR, Drioli E (2012) Membrane bioreactor (MBR) technology—a promising approach for industrial water reuse. Procedia Eng 33:234–241. https://doi.org/10.1016/j.proeng.2012.01.1199

    Article  CAS  Google Scholar 

  35. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: Possible approaches. J Environ Manage 182:351–366. https://doi.org/10.1016/j.jenvman.2016.07.090

    Article  CAS  Google Scholar 

  36. Holkar CR, Pandit AB, Pinjari DV (2014) Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545. Bioresour Technol 173:342–351. https://doi.org/10.1016/j.biortech.2014.09.108

    Article  CAS  Google Scholar 

  37. Hong H, Zhang M, He Y, Chen J, Lin H (2014) Fouling mechanisms of gel layer in a submerged membrane bioreactor. Bioresour Technol 166:295–302. https://doi.org/10.1016/j.biortech.2014.05.063

    Article  CAS  Google Scholar 

  38. Hu Y, Cheng H, Ji J, Li Y-Y (2020) A review of anaerobic membrane bioreactors for municipal wastewater treatment with a focus on multicomponent biogas and membrane fouling control. Environ Sci Water Res Technol 6:2641–2663. https://doi.org/10.1039/D0EW00528B

    Article  CAS  Google Scholar 

  39. Iorhemen OT, Hamza RA, Tay JH (2016) Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling. Membranes (Basel). 6:13–16. https://doi.org/10.3390/membranes6020033

    Article  CAS  Google Scholar 

  40. Isik Z, Arikan EB, Bouras HD, Dizge N (2019) Bioactive ultrafiltration membrane manufactured from Aspergillus carbonarius M333 filamentous fungi for treatment of real textile wastewater. Bioresour Technol Reports 5:212–219. https://doi.org/10.1016/j.biteb.2019.01.020

    Article  Google Scholar 

  41. J., N.N., Sandesh, K., K., G.K., Chidananda, B., Ujwal, P., (2019) Optimization of Direct Blue-14 dye degradation by Bacillus fermus (Kx898362) an alkaliphilic plant endophyte and assessment of degraded metabolite toxicity. J Hazard Mater 364:742–751. https://doi.org/10.1016/j.jhazmat.2018.10.074

    Article  CAS  Google Scholar 

  42. Jegatheesan V, Pramanik BK, Chen J, Navaratna D, Chang CY, Shu L (2016) Treatment of textile wastewater with membrane bioreactor: a critical review. Bioresour Technol 204:202–212. https://doi.org/10.1016/j.biortech.2016.01.006

    Article  CAS  Google Scholar 

  43. Jepsen KL, Bram MV, Hansen L, Yang Z, Lauridsen SMØ (2019) Online backwash optimization of membrane filtration for produced water treatment. Membranes (Basel). 9:1–18. https://doi.org/10.3390/membranes9060068

    Article  CAS  Google Scholar 

  44. Ji J, Chen Y, Hu Y, Ohtsu A, Ni J, Li E, Sakuma S, Hojo T, Chen R, Li Y-Y, (2021a) One-year operation of a 20-L submerged anaerobic membrane bioreactor for real domestic wastewater treatment at room temperature: pursuing the optimal HRT and sustainable flux. Sci Total Environ 775:145799.https://doi.org/10.1016/j.scitotenv.2021.145799

  45. Ji J, Kulshreshtha S, Kakade A, Majeed S, Li X, Liu P (2020) Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater. Int Biodeterior Biodegrad 150:104939.https://doi.org/10.1016/j.ibiod.2020.104939

  46. Ji J, Ni J, Ohtsu A, Isozumi N, Hu Y, Du R, Chen Y, Qin Y, Kubota K, Li Y-Y (2021b) Important effects of temperature on treating real municipal wastewater by a submerged anaerobic membrane bioreactor: removal efficiency, biogas, and microbial community. Bioresour Technol 336:125306. https://doi.org/10.1016/j.biortech.2021.125306

  47. Ji J, Sakuma S, Ni J, Chen Y, Hu Y, Ohtsu A, Chen R, Cheng H, Qin Y, Hojo T, Kubota K, Li YY (2020) Application of two anaerobic membrane bioreactors with different pore size membranes for municipal wastewater treatment. Sci Total Environ 745:140903.https://doi.org/10.1016/j.scitotenv.2020.140903

  48. Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020

    Article  CAS  Google Scholar 

  49. Khan S, Malik A (2016) Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 62:220–232. https://doi.org/10.1139/cjm-2015-0552

    Article  CAS  Google Scholar 

  50. Khouni I, Louhichi G, Ghrabi A (2020) Assessing the performances of an aerobic membrane bioreactor for textile wastewater treatment: Influence of dye mass loading rate and biomass concentration. Process Saf Environ Prot 135:364–382. https://doi.org/10.1016/j.psep.2020.01.011

    Article  CAS  Google Scholar 

  51. Kimura K, Uchida H (2019) Intensive membrane cleaning for MBRs equipped with flat-sheet ceramic membranes: Controlling negative effects of chemical reagents used for membrane cleaning. Water Res 150:21–28. https://doi.org/10.1016/j.watres.2018.11.030

    Article  CAS  Google Scholar 

  52. Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Memb Sci 284:17–53. https://doi.org/10.1016/j.memsci.2006.08.019

  53. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28. https://doi.org/10.1016/j.susmat.2016.02.001

    Article  CAS  Google Scholar 

  54. Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2:17–42. https://doi.org/10.1039/c5ew00159e

    Article  CAS  Google Scholar 

  55. Li K, Jiang C, Wang J, Wei Y (2016) The color removal and fate of organic pollutants in a pilotscale MBR-NF combined process treating textile wastewater with high water recovery. Water Sci Technol 73:1426–1433. https://doi.org/10.2166/wst.2015.623

    Article  Google Scholar 

  56. Li K, Liu Q, Fang F, Wu X, Xin J, Sun S, Wei Y, Ruan R, Chen P, Wang Y, Addy M (2020) Influence of nanofiltration concentrate recirculation on performance and economic feasibility of a pilot-scale membrane bioreactor-nanofiltration hybrid process for textile wastewater treatment with high water recovery. J Clean Prod 261:121067.https://doi.org/10.1016/j.jclepro.2020.121067

  57. Liao B-Q, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: applications and research directions. Crit Rev Environ Sci Technol 36:489–530

    Article  CAS  Google Scholar 

  58. Lin H, Peng W, Zhang M, Chen J, Hong H, Zhang Y (2013) A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination 314:169–188. https://doi.org/10.1016/j.desal.2013.01.019

    Article  CAS  Google Scholar 

  59. Liu C, Caothien S, Hayes J, Caothuy T, Otoyo T, Ogawa T (2001) Membrane chemical cleaning : from art to science. Pall Corp Port Washington, NY, 11050

    Google Scholar 

  60. Lotito AM, De Sanctis M, Di Iaconi C, Bergna G (2014) Textile wastewater treatment: aerobic granular sludge vs activated sludge systems. Water Res 54:337–346

    Article  CAS  Google Scholar 

  61. Lourenco ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89:163–174

    Article  CAS  Google Scholar 

  62. Mahboubi A, Ylitervo P, Doyen W, De Wever H, Taherzadeh MJ (2016) Reverse membrane bioreactor: Introduction to a new technology for biofuel production. Biotechnol Adv 34:954–975. https://doi.org/10.1016/j.biotechadv.2016.05.009

    Article  CAS  Google Scholar 

  63. Marcucci M, Nosenzo G, Capannelli G, Ciabatti I, Corrieri D, Ciardelli G (2001) Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138:75–82. https://doi.org/10.1016/S0011-9164(01)00247-8

    Article  CAS  Google Scholar 

  64. Marrot B, Barrios-Martinez A, Moulin P, Roche N (2004) Industrial wastewater treatment in a membrane bioreactor: a review. Environ Prog 23:59–68. https://doi.org/10.1002/ep.10001

    Article  CAS  Google Scholar 

  65. Martinez R, Ruiz MO, Ramos C, Camara JM, Diez V (2020). Comparison of external and submerged membranes used in anaerobic membrane bioreactors: fouling related issues and biological activity. Biochem Eng J 159:107558

    Google Scholar 

  66. Meng F, Chae SR, Drews A, Kraume M, Shin HS, Yang F (2009) Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res 43:1489–1512. https://doi.org/10.1016/j.watres.2008.12.044

    Article  CAS  Google Scholar 

  67. Metzger U, Le-Clech P, Stuetz RM, Frimmel FH, Chen V (2007) Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes. J Memb Sci 301:180–189. https://doi.org/10.1016/j.memsci.2007.06.016

    Article  CAS  Google Scholar 

  68. Mishra S, Mohanty P, Maiti A (2019) Bacterial mediated bio-decolourization of wastewater containing mixed reactive dyes using jack-fruit seed as co-substrate: process optimization. J Clean Prod 235:21–33. https://doi.org/10.1016/j.jclepro.2019.06.328

    Article  CAS  Google Scholar 

  69. Mitra S, Daltrophe NC, Gilron J (2016) A novel eductor-based MBR for the treatment of domestic wastewater. Water Res 100:65–79. https://doi.org/10.1016/j.watres.2016.04.057

    Article  CAS  Google Scholar 

  70. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht MCM, Ahmad A, Nawahwi MZ (2010) Development of granular sludge for textile wastewater treatment. Water Res 44:4341–4350

    Google Scholar 

  71. Mustereţ CP, Teodosiu C (2007) Removal of persistent organic pollutants from textile wastewater by membrane processes. Environ Eng Manag J 6:175–187. https://doi.org/10.30638/eemj.2007.022

  72. Najme R, Hussain S, Maqbool Z, Imran M, Mahmood F, Manzoor H, Yasmeen T, Shahzad T (2015) Biodecolorization of Reactive Yellow-2 by <I>Serratia</I> sp. RN34 Isolated from Textile Wastewater. Water Environ Res 87:2065–2075. https://doi.org/10.2175/106143015x14362865226031

    Article  CAS  Google Scholar 

  73. Nilusha RT, Wang T, Wang H, Yu D, Zhang J, Wei Y (2020) Optimization of in situ backwashing frequency for stable operation of anaerobic ceramic membrane bioreactor. Processes 8.https://doi.org/10.3390/PR8050545

  74. Okamura D, Mori Y, Hashimoto T, Hori K (2009) Identification of biofoulant of membrane bioreactors in soluble microbial products. Water Res 43:4356–4362. https://doi.org/10.1016/j.watres.2009.06.042

  75. Olukanni OD, Osuntoki AA, Kalyani DC, Gbenle GO, Govindwar SP (2010) Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J Hazard Mater 184:290–298. https://doi.org/10.1016/j.jhazmat.2010.08.035

    Article  CAS  Google Scholar 

  76. Padmanaban VC, Geed SRR, Achary A, Singh RS (2016) Kinetic studies on degradation of Reactive Red 120 dye in immobilized packed bed reactor by Bacillus cohnii RAPT1. Bioresour Technol 213:39–43. https://doi.org/10.1016/j.biortech.2016.02.126

    Article  CAS  Google Scholar 

  77. Pretel R, Robles A, Ruano MV, Seco A, Ferrer J (2014) The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Sep Purif Technol 126:30–38. https://doi.org/10.1016/j.seppur.2014.02.013

    Article  CAS  Google Scholar 

  78. Qin L, Zhang G, Meng Q, Xu L, Lv B (2012) Enhanced MBR by internal micro-electrolysis for degradation of anthraquinone dye wastewater. Chem Eng J 210:575–584. https://doi.org/10.1016/j.cej.2012.09.006

    Article  CAS  Google Scholar 

  79. Radjenović J, Matošić M, Mijatović I, Petrović M, Barceló D (2008) membrane bioreactor (MBR) as an advanced wastewater treatment technology. In: Barceló D, Petrovic M (Eds), Emerging contaminants from industrial and municipal waste: removal technologies. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 37–101. https://doi.org/10.1007/698_5_093

  80. Rondon H, El-Cheikh W, Boluarte IAR, Chang CY, Bagshaw S, Farago L, Jegatheesan V, Shu L (2015) Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater. Bioresour Technol 183:78–85. https://doi.org/10.1016/j.biortech.2015.01.110

    Article  CAS  Google Scholar 

  81. Roy U, Sengupta S, Banerjee P, Das P, Bhowal A, Datta S (2018) Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation. J Environ Manage 223:185–195. https://doi.org/10.1016/j.jenvman.2018.06.026

    Article  CAS  Google Scholar 

  82. Saba B, Khalid A, Nazir A, Kanwal H, Mahmood T (2013) Reactive black-5 azo dye treatment in suspended and attach growth sequencing batch bioreactor using different co-substrates. Int Biodeterior Biodegrad 85:556–562. https://doi.org/10.1016/j.ibiod.2013.05.005

    Article  CAS  Google Scholar 

  83. Sahinkaya E, Yurtsever A, Çınar Ö (2017) Treatment of textile industry wastewater using dynamic membrane bioreactor: Impact of intermittent aeration on process performance. Sep Purif Technol 174:445–454. https://doi.org/10.1016/j.seppur.2016.10.049

    Article  CAS  Google Scholar 

  84. Saikia J, Sarmah S, Bora JJ, Das B, Goswamee RL (2019) Preparation and characterization of low cost flat ceramic membranes from easily available potters’ clay for dye separation. Bull Mater Sci 42:1–13. https://doi.org/10.1007/s12034-019-1767-7

    Article  CAS  Google Scholar 

  85. Samsami S, Mohamadi M, Sarrafzadeh MH, Rene ER, Firoozbahr M (2020) Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf Environ Prot 143:138–163. https://doi.org/10.1016/j.psep.2020.05.034

    Article  CAS  Google Scholar 

  86. Sathya U, Keerthi N, M., Balasubramanian, N., (2019) Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J Environ Manage 246:768–775. https://doi.org/10.1016/j.jenvman.2019.06.039

    Article  CAS  Google Scholar 

  87. Sathya U, Keerthi P, Nithya M, Balasubramanian N (2021) Development of photochemical integrated submerged membrane bioreactor for textile dyeing wastewater treatment. Environ Geochem Health 43:885–896. https://doi.org/10.1007/s10653-020-00570-x

    Article  CAS  Google Scholar 

  88. Seib MD, Berg KJ, Zitomer DH (2016) Low energy anaerobic membrane bioreactor for municipal wastewater treatment. J Memb Sci 514:450–457. https://doi.org/10.1016/j.memsci.2016.05.007

    Article  CAS  Google Scholar 

  89. Shah PD, Dave SR, Rao MS (2012) Enzymatic degradation of textile dye Reactive Orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. Int Biodeterior Biodegrad 69:41–50. https://doi.org/10.1016/j.ibiod.2012.01.002

    Article  CAS  Google Scholar 

  90. Sharma SCD, Sun Q, Li J, Wang Y, Suanon F, Yang J, Yu CP (2016) Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2,6-disulfonate and Fe3O4 nanoparticles. Int Biodeterior Biodegrad 112:88–97. https://doi.org/10.1016/j.ibiod.2016.04.035

    Article  CAS  Google Scholar 

  91. Smithers LG, Markrides M, Gibson RA (2010) Human milk fatty acids from lactating mothers of preterm infants: a study revealing wide intra- and inter-individual variation. Prostaglandins Leukot. Essent. Fat. Acids 83:9–13. https://doi.org/10.1016/j.plefa.2010.02.034

    Article  CAS  Google Scholar 

  92. Spagni A, Casu S, Grilli S (2012) Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor. Bioresour Technol 117:180–185. https://doi.org/10.1016/j.biortech.2012.04.074

    Article  CAS  Google Scholar 

  93. Stricot M, Filali A, Lesage N, Spérandio M, Cabassud C (2010) Side-stream membrane bioreactors: Influence of stress generated by hydrodynamics on floc structure, supernatant quality and fouling propensity. Water Res 44:2113–2124

    Article  CAS  Google Scholar 

  94. Sun F, Sun B, Hu J, He Y, Wu W (2015) Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale. J Hazard Mater 286:416–424. https://doi.org/10.1016/j.jhazmat.2015.01.031

    Article  CAS  Google Scholar 

  95. Sun W, Chen J, Chen L, Wang J, Zhang Y (2016) Coupled electron beam radiation and MBR treatment of textile wastewater containing polyvinyl alcohol. Chemosphere 155:57–61. https://doi.org/10.1016/j.chemosphere.2016.04.030

    Article  CAS  Google Scholar 

  96. Sun XY, Chu HQ, Zhang YL, Zhou XF (2012) Review on dynamic membrane reactor (DMBR) for municipal and industrial wastewater treatment. Adv Mater Res 455–456:1278–1284. https://doi.org/10.4028/www.scientific.net/AMR.455-456.1278

    Article  CAS  Google Scholar 

  97. Tavangar T, Jalali K, Alaei Shahmirzadi MA, Karimi M (2019) Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation—Nanofiltration process. Sep Purif Technol 216:115–125. https://doi.org/10.1016/j.seppur.2019.01.070

    Article  CAS  Google Scholar 

  98. Tian Z, Xin W, Song Y, Li F (2015) Simultaneous organic carbon and nitrogen removal from refractory petrochemical dry-spun acrylic fiber wastewater by hybrid A/O-MBR process. Environ Earth Sci 73:4903–4910. https://doi.org/10.1007/s12665-015-4210-4

    Article  CAS  Google Scholar 

  99. van’t Oever, R., (2005) MBR focus: is submerged best? Filtr Sep 42:24–27

    Article  Google Scholar 

  100. Varjani S, Rakholiya P, Ng HY, You S, Teixeira JA (2020) Microbial degradation of dyes: an overview. Bioresour Technol 314.https://doi.org/10.1016/j.biortech.2020.123728

  101. Visvanathan C (2009) Treatment of Industrial Wastewater by Membrane Bioreactors. EOLSS Publications, Water and Wastewateer Treatment Technologies-Volume II

    Google Scholar 

  102. Wang Y, Wang H, Wang X, Xiao Y, Zhou Y, Su X, Cai J, Sun F (2020) Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: a critical review and update. Sci Total Environ 730:139034.https://doi.org/10.1016/j.scitotenv.2020.139034

  103. Wang Z, Ma J, Tang CY, Kimura K, Wang Q, Han X (2014) Membrane cleaning in membrane bioreactors: a review. J. Memb. Sci. 468:276–307. https://doi.org/10.1016/j.memsci.2014.05.060

    Article  CAS  Google Scholar 

  104. Wang Z, Ma J, Tang CY, Kimura K, Wang Q, Han X (2014) Membrane cleaning in membrane bioreactors : a review. J Memb Sci 468:276–307

    Article  CAS  Google Scholar 

  105. Watanabe R, Qiao W, Norton M, Wakahara S, Li Y-Y (2014) Recent developments in municipal wastewater treatment using anaerobic membrane bioreactor: a review. J Water Sustain 2:101–122. https://doi.org/10.11912/jws.4.2.101-122

  106. Wen C, Huang X, Qian Y (1999) Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration. Process Biochem 35:335–340. https://doi.org/10.1016/S0032-9592(99)00076-X

    Article  CAS  Google Scholar 

  107. Wu J, Le-Clech P, Stuetz RM, Fane AG, Chen V (2008) Effects of relaxation and backwashing conditions on fouling in membrane bioreactor. J Memb Sci 324:26–32. https://doi.org/10.1016/j.memsci.2008.06.057

    Article  CAS  Google Scholar 

  108. Yan Z, Wang S, Kang X, Ma Y (2009) Pilot-scale hybrid coagulation/membrane bioreactor (HCMBR) for textile dyeing wastewater advanced treatment. 3rd Int. Conf Bioinforma Biomed Eng iCBBE 2009:1–4. https://doi.org/10.1109/ICBBE.2009.5163198

    Article  Google Scholar 

  109. Yang X, Crespi M, López-Grimau V (2018) A review on the present situation of wastewater treatment in textile industry with membrane bioreactor and moving bed biofilm reactor. Desalin Water Treat 103:315–322. https://doi.org/10.5004/dwt.2018.21962

    Article  CAS  Google Scholar 

  110. Yigit NO, Uzal N, Koseoglu H, Harman I, Yukseler H, Yetis U, Civelekoglu G, Kitis M (2009) Treatment of a denim producing textile industry wastewater using pilot-scale membrane bioreactor. Desalination 240:143–150. https://doi.org/10.1016/j.desal.2007.11.071

    Article  CAS  Google Scholar 

  111. Yoon S-H (2015) Membrane bioreactor processes: principles and applications. CRC Press

    Book  Google Scholar 

  112. Yurtsever A, Basaran E, Ucar D (2020a) Process optimization and filtration performance of an anaerobic dynamic membrane bioreactor treating textile wastewaters. J Environ Manage 273:111114.https://doi.org/10.1016/j.jenvman.2020.111114

  113. Yurtsever A, Calimlioglu B, Sahinkaya E (2017) Impact of SRT on the efficiency and microbial community of sequential anaerobic and aerobic membrane bioreactors for the treatment of textile industry wastewater. Chem Eng J 314:378–387. https://doi.org/10.1016/j.cej.2016.11.156

    Article  CAS  Google Scholar 

  114. Yurtsever A, Çinar Ö, Sahinkaya E (2016) Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J Memb Sci 511:228–237. https://doi.org/10.1016/j.memsci.2016.03.044

    Article  CAS  Google Scholar 

  115. Yurtsever A, Sahinkaya E, Aktaş Ö, Uçar D, Çinar Ö, Wang Z (2015) Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresour Technol 192:564–573. https://doi.org/10.1016/j.biortech.2015.06.024

    Article  CAS  Google Scholar 

  116. Yurtsever A, Sahinkaya E, Çınar Ö (2020b) Performance and foulant characteristics of an anaerobic membrane bioreactor treating real textile wastewater. J Water Process Eng 33.https://doi.org/10.1016/j.jwpe.2019.101088

  117. Zhou L, Ou P, Zhao B, Zhang W, Yu K, Xie K, Zhuang WQ (2021a) Assimilatory and dissimilatory sulfate reduction in the bacterial diversity of biofoulant from a full-scale biofilm-membrane bioreactor for textile wastewater treatment. Sci Total Environ 772.https://doi.org/10.1016/j.scitotenv.2021.145464

  118. Zhou L, Zhao B, Ou P, Zhang W, Li H, Yi S, Zhuang WQ (2021b) Core nitrogen cycle of biofoulant in full-scale anoxic & oxic biofilm-membrane bioreactors treating textile wastewater. Bioresour Technol 325:124667. https://doi.org/10.1016/j.biortech.2021.124667

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayuan Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ji, J., Li, Y., Ni, J. (2022). Aerobic/Anaerobic Membrane Bioreactor in Textile Wastewater. In: Khadir, A., Muthu, S.S. (eds) Biological Approaches in Dye-Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0545-2_9

Download citation

Publish with us

Policies and ethics