Skip to main content

Impact of Genetic Algorithm on Low Power QCA Logic Circuit with Regular Clocking

  • Conference paper
  • First Online:
Proceedings of First Asian Symposium on Cellular Automata Technology (ASCAT 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1425))

Included in the following conference series:

Abstract

Quantum-dot Cellular Automata (QCA) is the alternative approach to synthesize the logic circuit with high density and low power dissipation to overcome the limitation of current VLSI technology. The underlying regular clocking scheme plays a significant role in the systematic cell layout, scalability, and reliability of the QCA circuit. This work analyzes the impact of genetic algorithm (GA) on regular clock based QCA circuits for less power dissipation. The elitism-based methodology is utilized to effectively realize multi-output boolean functions, embedding regular clocking schemes. A detailed analysis of power dissipation with different regular clocking schemes is reported. QCADesigner is used for logic synthesis, whereas QCAPro and QCADesignerE have been utilized for energy dissipation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karim, F., Walus, K.: Efficient simulation of correlated dynamics in quantum-dot cellular automata (qca). IEEE Trans. Nanotechnol. 13(2), 294–307 (2014)

    Article  Google Scholar 

  2. Houshmand, M., Saleh, R.R., Houshmand, M.: Logic Minimization of QCA Circuits Using Genetic Algorithms, pp. 393–403. Springer, Berlin (2011)

    Google Scholar 

  3. Tehrani, M.A., Navi, K., Kia-kojoori, A.: Multi-output majority gate-based design optimization by using evolutionary algorithm. Swarm Evol. Comput. 10, 25–30 (2013)

    Article  Google Scholar 

  4. Vasconcelos, J.A., Ramirez, J.A., Takahashi, R.H.C., Saldanha, R.R.: Improvements in genetic algorithms. IEEE Trans. Magn. 37(5), 3414–3417 (2001)

    Article  Google Scholar 

  5. Ahn, C.W., Ramakrishna, R.S.: Elitism-based compact genetic algorithms. IEEE Trans. Evol. Comput. 7(4), 367–385 (2003)

    Article  Google Scholar 

  6. Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of qca circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 34–44 (2007)

    Article  Google Scholar 

  7. Campos, C.A.T., Marciano, A.L., Neto, O.P.V., Torres, F.S.: Use: a universal, scalable, and efficient clocking scheme for qca. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(3), 513–517 (2015)

    Article  Google Scholar 

  8. Goswami, M., Mondal, A., Mahalat, M.H., Sen, B., Sikdar, B.K.: An efficient clocking scheme for quantum-dot cellular automata. Int. J. Electron. Lett. 1–14 (2019)

    Google Scholar 

  9. Wang, L., Xie, G., Zhu, R., Yu, C.: An optimized clocking scheme for nanoscale quantum-dot cellular automata circuit. In: 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 336–341. IEEE (2019)

    Google Scholar 

  10. Bennett, C.: Logical reversibility of computation. IBM J. Res. Devel. 525–532 (1973)

    Google Scholar 

  11. Srivastava, S., Sarkar, S., Bhanja, S.: Power dissipation bounds and models for quantum-dot cellular automata circuits. In: 2006 Sixth IEEE Conference on Nanotechnology, vol. 1, pp. 375–378. IEEE (2006)

    Google Scholar 

  12. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  13. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process., Measur., Phenom. 19(5), 1752–1755 (2001)

    Google Scholar 

  14. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Safety 91(9), 992–1007 (2006)

    Article  Google Scholar 

  15. Deb, K.: Multi-Objective Evolutionary Algorithms, pp. 995–1015. Springer, Berlin (2015)

    Google Scholar 

  16. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, et al. D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, vol. 5. Springer (2007)

    Google Scholar 

  17. Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)

    Article  Google Scholar 

  18. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)

    Google Scholar 

  19. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: Qcapro-an error-power estimation tool for qca circuit design. In: IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2377–2380. IEEE (2011)

    Google Scholar 

  20. Torres, F.S., Wille, R., Niemann, P., Drechsler, R.: An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 37, 3031–3041 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Young Faculty Research Fellowship (YFRF) of Visvesvaraya Ph.D. scheme through the grant number MLA/MUM/GA/10(37)B.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pramanik, A.K., Pal, J., Sen, B. (2022). Impact of Genetic Algorithm on Low Power QCA Logic Circuit with Regular Clocking. In: Das, S., Martinez, G.J. (eds) Proceedings of First Asian Symposium on Cellular Automata Technology. ASCAT 2022. Advances in Intelligent Systems and Computing, vol 1425. Springer, Singapore. https://doi.org/10.1007/978-981-19-0542-1_14

Download citation

Publish with us

Policies and ethics