Skip to main content

Designing an Energy Use Analysis and Life Cycle Assessment of the Environmental Sustainability of Conservation Agriculture Wheat Farming in Bangladesh

  • Chapter
  • First Online:
Environmental Footprints of Crops

Abstract

The agricultural sector in Bangladesh is an ongoing societal expectation of reducing environmental impacts and increasing crop productivity to provide food security for its growing population. Introducing life cycle assessment is a systematic approach for establishing how sustainable a crop may become and the potential impacts of complete life cycle wheat farming on the environment and input resource conservation. This innovative field study focuses on conservation agriculture wheat farming to increase energy use efficiency (EUE) and environmental sustainability by decreasing greenhouse gas (GHG) emissions through comparing different conservation tillage practices to conventional tillage. Furthermore, the study estimated the net carbon footprint (CF) of wheat farming, taking into account the additional contribution of soil carbon sequestration and offered a model of the environmental sustainability for wheat farming. The FEAT tool was used to assess energy use analysis, life cycle GHG emissions, and CF during the life cycle (CF) wheat farming. The introduced strip tillage (ST), minimum tillage (MT), and conventional tillage (CT) were predicted by utilizing input enegy of 18,764.29, 18,728.78, and 20,564.32 MJ ha−1 in wheat farming, respectively, with the EUE of 8.46, 8.65, and 6.25%. Among the tillage practices, MT is the most effective practice option in the wheat farming production process. The net life cycle GHG emissions were observed to be 1.968, 1.977, and 2.023 kgCO2eq ha−1 for ST, MT and CT, respectively, where the CF was estimated to be 0.013, 0.012, and 0.014 kgCO2 MJ−1. As a result, CA-based ST and MT practices to be the most effective life cycle GHG mitigation options for wheat farming in Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhya TK, Mishra SR, Rath AK, Bharati K, Mohanty SR, Ramakrishnan B, Rao VR, Sethunathan N (2000) Methane efflux from rice-based cropping systems under humid tropical conditions of eastern India. Agric Ecosyst Environ. https://doi.org/10.1016/S0167-8809(99)00144-9

    Article  Google Scholar 

  2. Alam MK, Bell RW, Biswas WK (2019) Decreasing the carbon footprint of an intensive rice-based cropping system using conservation agriculture on the Eastern Gangetic Plains. J Clean Prod 218:259–272. https://doi.org/10.1016/j.jclepro.2019.01.328

    Article  CAS  Google Scholar 

  3. Alam MK, Bell RW, Haque ME, Kader MA (2018) Minimal soil disturbance and increased residue retention increase soil carbon in rice-based cropping systems on the Eastern Gangetic Plain. Soil Tillage Res 138:28–41. https://doi.org/10.1016/j.still.2018.05.009

    Article  Google Scholar 

  4. Alam MK, Biswas WK, Bell RW (2016) Greenhouse gas implications of novel and conventional rice production technologies in the Eastern-Gangetic plains. J Clean Prod 112:3977–3987. https://doi.org/10.1016/j.jclepro.2015.09.071

    Article  CAS  Google Scholar 

  5. Alam MK, Islam MM, Salahin N, Hasanuzzaman M (2014) Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Sci World J 7:1–17. https://doi.org/10.1155/2014/437283

    Article  Google Scholar 

  6. Arunrat N, Pumijumnong N, Sereenonchai S, Chareonwong U (2020) Factors controlling soil organic carbon sequestration of highland agricultural areas in the Mae Chaem Basin, northern Thailand. Agronomy 10:305. https://doi.org/10.3390/agronomy10020305

    Article  CAS  Google Scholar 

  7. Azad AK, Miaruddin M, Wohab MA, Sheikh MHR, Nag BL, Rahman MHH (2020) KRISHI PROJUKTI HATBOI (Handbook on Agro-Technology), 9th edn. Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh

    Google Scholar 

  8. Baldock JA (2007) Composition and cycling of organic carbon in soil. In: Nutrient cycling in terrestrial ecosystems, pp 1–35. https://doi.org/10.1007/978-3-540-68027-7_1

  9. Banerjee A, Jhariya MK, Raj A, Yadav DK, Khan N, Meena RS (2021) Energy and climate footprint towards the environmental sustainability. In: Agroecological footprints management for sustainable food system. https://doi.org/10.1007/978-981-15-9496-0_14

  10. Bangladesh Bureau of Statistics (BBS) (2018) Yearbook of agricultural statistics-2017

    Google Scholar 

  11. Bell RW, Enamul Haque M, Jahiruddin M, Moshiur Rahman M, Begum M, Monayem Miah MA, Ariful Islam M, Anwar Hossen M, Salahin N, Zahan T, Hossain MM, Alam MK, Mahmud MNH (2019) Conservation agriculture for rice-based intensive cropping by smallholders in the eastern gangetic plain. Agric 9:1–17. https://doi.org/10.3390/agriculture9010005

    Article  Google Scholar 

  12. Bhatia A, Sasmal S, Jain N, Pathak H, Kumar R, Singh A (2010) Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2010.01.004

    Article  Google Scholar 

  13. Black CA (1950) Method of soil analysis Part I and II. Am Soc Agron Inc 770

    Google Scholar 

  14. Burt R (2014) Soil survey field and laboratory methods manual soil survey investigations report No. 51. United States Dep. Agric. Nat. Resour. Conserv. Serv. version 2

    Google Scholar 

  15. Camargo GGT, Ryan MR, Richard TL (2013) Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. Bioscience 63:263–273. https://doi.org/10.1525/bio.2013.63.4.6

    Article  Google Scholar 

  16. Canakci M, Topakci M, Akinci I, Ozmerzi A (2005) Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Convers Manag 46:655–666. https://doi.org/10.1016/j.enconman.2004.04.008

    Article  Google Scholar 

  17. Chakrabarti B, Pramanik P, Mina U, Sharma DK, Mittal R (2014) Impact of conservation agricultural practices on soil physic-chemical properties. Int J Agric Sci 5:55–59

    Google Scholar 

  18. Chatterjee S, Ghosh S, Pal P (2020) Soil carbon restoration through conservation agriculture. In: Natural resources management and biological sciences. https://doi.org/10.5772/intechopen.93006

  19. Chowdhury MAH, Hassan MS (2013) Agricultural technology hand book. Bangladesh Agricultural Research Council, Farmgate, Dhaka-1215

    Google Scholar 

  20. Clark A (2007) Managing cover crops in conservation tillage systems, 3rd edn. In: Sustainable Agriculture Research and Education (SARE) program. National Institute of Food and Agriculture, U.S. Department of Agriculture, Maryland, USA

    Google Scholar 

  21. Dachraoui M, Sombrero A (2020) Effect of tillage systems and different rates of nitrogen fertilisation on the carbon footprint of irrigated maize in a semiarid area of Castile and Leon, Spain. Soil Tillage Res 196:104472. https://doi.org/10.1016/j.still.2019.104472

    Article  Google Scholar 

  22. Denham FC, Biswas WK, Solah VA, Howieson JR (2016) Greenhouse gas emissions from a Western Australian finfish supply chain. J Clean Prod 112:2079–2087. https://doi.org/10.1016/j.jclepro.2014.11.080

    Article  CAS  Google Scholar 

  23. Erdal G, Esengün K, Erdal H, Gündüz O (2007) Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 32:35–41. https://doi.org/10.1016/j.energy.2006.01.007

    Article  Google Scholar 

  24. FAOSTAT (2021) Emiss Shares, Foog Agric. Organ. United Nations. http://www.fao.org/faostat/en/#data/EM/metadata. Accessed 8 Jan 21

  25. Finkbeiner M, Inaba A, Tan RBH, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess. https://doi.org/10.1065/lca2006.02.002

    Article  Google Scholar 

  26. Forte A, Fiorentino N, Fagnano M, Fierro A (2017) Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil Tillage Res 166:167–178. https://doi.org/10.1016/j.still.2016.09.014

    Article  Google Scholar 

  27. Furtak K, Gajda AM (2018) Activity and variety of soil microorganisms depending on the diversity of the soil tillage system. In: Sustainability of agroecosystems, p 45. https://doi.org/10.5772/intechopen.72966

  28. Giampietro M, Cerretelli G, Pimentel D (1992) Energy analysis of agricultural ecosystem management: human return and sustainability. Agric Ecosyst Environ 38:219–244. https://doi.org/10.1016/0167-8809(92)90146-3

    Article  Google Scholar 

  29. Gómez-Limón JA, Sanchez-Fernandez G (2010) Empirical evaluation of agricultural sustainability using composite indicators. Ecol Econ 69:1062–1075. https://doi.org/10.1016/j.ecolecon.2009.11.027

    Article  Google Scholar 

  30. He L, Zhang A, Wang X, Li J, Hussain Q (2019) Effects of different tillage practices on the carbon footprint of wheat and maize production in the Loess Plateau of China. J Clean Prod 234:297–305. https://doi.org/10.1016/j.jclepro.2019.06.161

    Article  Google Scholar 

  31. Hillier J, Hawes C, Squire G, Hilton A, Wale S, Smith P (2009) The carbon footprints of food crop production. Int J Agric Sustain 7:107–118. https://doi.org/10.3763/ijas.2009.0419

    Article  Google Scholar 

  32. Hossain MI, Sarker M, Haque MA (2015) Status of conservation agriculture based tillage technology for crop production in Bangladesh. Bangladesh J Agric Res 40:235–248. https://doi.org/10.3329/bjar.v40i2.24561

    Article  Google Scholar 

  33. Hosseinpanahi F, Kafi M (2012) Assess the energy budget in farm production and productivity of potato (Solanum tuberosum L.) in Kurdistan, case study: plain Dehgolan. J Agroecol 4:159–169

    Google Scholar 

  34. Imran M, Özçatalbaş O, Bashir MK (2020) Estimation of energy efficiency and greenhouse gas emission of cotton crop in South Punjab, Pakistan. J Saudi Soc Agric Sci 19:216–224. https://doi.org/10.1016/j.jssas.2018.09.007

    Article  Google Scholar 

  35. ISO (2016) Environmental management—life cycle assessment—requirements and guidelines ISO 14044:2006). Int Organ Stand. https://www.iso.org/standard/38498.html. Accessed 23 Oct 21

  36. Jackson ML (1959) Soil chemical analysis. J Agric Food Chem 7:138. https://doi.org/10.1021/jf60096a605

    Article  Google Scholar 

  37. Jain N, Dubey R, Dubey DS, Singh J, Khanna M, Pathak H, Bhatia A (2014) Mitigation of greenhouse gas emission with system of rice intensification in the Indo-Gangetic Plains. Paddy Water Environ. https://doi.org/10.1007/s10333-013-0390-2

    Article  Google Scholar 

  38. Jat ML, Saharawat Y, Gupta R (2011) Conservation agriculture in cereal systems of south Asia: nutrient management perspectives. J Agric Sci 24:100–105

    Google Scholar 

  39. Jiban S, Subash S, Prasad TK, Amit C, Manoj K, Subina T (2020) Conservation agriculture as an approach towards sustainable crop production : a review. Farming Manag 5:7–15. https://doi.org/10.31830/2456-8724.2020.002

  40. Khan S, Khan MA, Hanjra MA, Mu J (2009) Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy 34:141–149. https://doi.org/10.1016/j.foodpol.2008.11.002

    Article  Google Scholar 

  41. Khosruzzaman S, Asgar MA, Rahman KR, Akbar S (2010) Energy intensity and productivity in relation to agriculture-bangladesh perspective. J Bangladesh Acad Sci 34:59–70. https://doi.org/10.3329/jbas.v34i1.5492

    Article  Google Scholar 

  42. Kurkela E, Moilanen A, Nieminen M (1999) CFB gasification of biomass residues for co-combustion in large utility boilers: studies on ash control and gas cleaning. In: Ower production from biomass III: gasification and pyrolysis R&D&D for Industry. VTT Technical Research Centre of Finland. VTT Symposium, No. 192, Espoo, Finland, pp 213–228

    Google Scholar 

  43. Lal R (2004) Carbon emission from farm operations. Environ Int. https://doi.org/10.1016/j.envint.2004.03.005

    Article  Google Scholar 

  44. Liu C, Wang K, Meng S, Zheng X, Zhou Z, Han S, Chen D, Yang Z (2011) Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2010.12.009

    Article  Google Scholar 

  45. Liu J, Wang H, Rahman S, Sriboonchitta S (2021) Energy efficiency, energy conservation and determinants in the agricultural sector in emerging economies. Agric 11:773. https://doi.org/10.3390/agriculture11080773

    Article  Google Scholar 

  46. Mittal R, Chakrabarti B, Jindal T, Tripathi A, Mina U, Dhupper R, Chakraborty D, Jatav RS, Harit RC (2018) Carbon footprint is an indicator of sustainability in rice-wheat cropping system: a review. Chem Sci Rev Lett 7:774–784

    Google Scholar 

  47. Mohammadshirazi A, Akram A, Rafiee S, Mousavi Avval SH, Bagheri Kalhor E (2012) An analysis of energy use and relation between energy inputs and yield in tangerine production. Renew Sustain Energy Rev 16:4515–4521. https://doi.org/10.1016/j.rser.2012.04.047

    Article  Google Scholar 

  48. Naderi SA, Dehkordi AL, Taki M (2019) Energy and environmental evaluation of greenhouse bell pepper production with life cycle assessment approach. Environ Sustain Indic 3–4:100011. https://doi.org/10.1016/j.indic.2019.100011

    Article  Google Scholar 

  49. Nasseri A (2019) Energy use and economic analysis for wheat production by conservation tillage along with sprinkler irrigation. Sci Total Environ 648:450–459. https://doi.org/10.1016/j.scitotenv.2018.08.170

    Article  CAS  Google Scholar 

  50. Notter B, Keller M, Althaus H, Cox B, Heidt C, Biemann K, Knorr W, Rader D, Jamet M (2020) HBEFA, 2014. Handb Emiss Factors Road Transp (HBEFA). Version HBEFA 4.1. https://www.hbefa.net/e/index.html

  51. Ozkan B, Akcaoz H, Fert C (2004) Energy input-output analysis in Turkish agriculture. Renew Energy 29:39–51. https://doi.org/10.1016/S0960-1481(03)00135-6

    Article  Google Scholar 

  52. Pandey D, Agrawal M, Bohra JS (2012) Greenhouse gas emissions from rice crop with different tillage permutations in rice-wheat system. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2012.07.008

    Article  Google Scholar 

  53. Pathak H, Aggarwal PK (2012) Low carbon technologies for agriculture: a study on rice and wheat systems in the indo-gangetic plains. New Delhi, India

    Google Scholar 

  54. Pathak H, Jain N, Bhatia A, Patel J, Aggarwal PK (2010) Carbon footprints of Indian food items. Agric Ecosyst Environ 139:66–73. https://doi.org/10.1016/j.agee.2010.07.002

    Article  Google Scholar 

  55. Phyllis (2020) Database for biomass and waste. Wheat straw 1995. https://ukerc.rl.ac.uk/DC/cgi-bin/edc_search.pl/?WantComp=85

  56. Pimentel D, Cooperstein S, Randell H, Filiberto D, Sorrentino S, Kaye B, Nicklin C, Yagi J, Brian J, O’Hern J, Habas A, Weinstein C (2007) Ecology of increasing diseases: population growth and environmental degradation. Hum Ecol 35:653–668. https://doi.org/10.1007/s10745-007-9128-3

    Article  CAS  Google Scholar 

  57. Pishgar-Komleh SH, Ghahderijani M, Sefeedpari P (2012) Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. J Clean Prod 33:183–191. https://doi.org/10.1016/j.jclepro.2012.04.008

    Article  Google Scholar 

  58. Rahman MM, Aravindakshan S, Hoque MA, Rahman MA, Gulandaz MA, Rahman J, Islam MT (2021) Conservation tillage (CT) for climate-smart sustainable intensification: assessing the impact of CT on soil organic carbon accumulation, greenhouse gas emission and water footprint of wheat cultivation in Bangladesh. Environ Sustain Indic 10:100106. https://doi.org/10.1016/j.indic.2021.100106

    Article  Google Scholar 

  59. Rahman S, Hasan MK (2014) Energy productivity and efficiency of wheat farming in Bangladesh. Energy 66:107–114. https://doi.org/10.1016/j.energy.2013.12.070

    Article  Google Scholar 

  60. Sayed A, Sarker A, Kim JE, Rahman MM, Mahmud MGA (2020) Environmental sustainability and water productivity on conservation tillage of irrigated maize in red brown terrace soil of Bangladesh. J Saudi Soc Agric Sci 19:276–284. https://doi.org/10.1016/j.jssas.2019.03.002

    Article  Google Scholar 

  61. Singh BP, Setia R, Wiesmeier M, Kunhikrishnan A (2018) Agricultural management practices and soil organic carbon storage. Soil Carbon Storage: Modulators, Mech Model. https://doi.org/10.1016/B978-0-12-812766-7.00007-X

  62. Singh G, Singh S, Singh J (2004) Optimization of energy inputs for wheat crop in Punjab. Energy Convers Manag 45:453–465. https://doi.org/10.1016/S0196-8904(03)00155-9

    Article  Google Scholar 

  63. Singh H, Singh AK, Kushwaha HL, Singh A (2007) Energy consumption pattern of wheat production in India. Energy 32:1848–1854. https://doi.org/10.1016/j.energy.2007.03.001

    Article  Google Scholar 

  64. Singh S, Singh S, Mittal JP, Pannu CJS (1998) Frontier energy use for the cultivation of wheat crop in punjab. Energy Convers Manag 39:485–491. https://doi.org/10.1016/s0196-8904(96)00234-8

    Article  CAS  Google Scholar 

  65. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) IPCC, 2013: climate change 2013: the physical science basis. In: Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change, IPCC

    Google Scholar 

  66. Suh S (2004) Materials and energy flows in industry and ecosystem networks. Int J Life Cycle Assess 9:335–336. https://doi.org/10.1007/bf02979425

    Article  Google Scholar 

  67. UNEP (2017) The emissions gap report 2017—a UN environment synthesis report. United Nations Environ Programme (UNEP). https://doi.org/10.1016/j.biocon.2006.04.034

    Article  Google Scholar 

  68. Volanti M, Martínez CC, Cespi D, Lopez‑Baeza E, Vassura I, Passarini F (2021) Environmental sustainability assessment of organic vineyard practices from a life cycle perspective. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03688-2

  69. Wang W, Yuan J, Gao S, Li T, Li Y, Vinay N, Mo F, Liao Y, Wen X (2020) Conservation tillage enhances crop productivity and decreases soil nitrogen losses in a rainfed agroecosystem of the Loess Plateau, China. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122854

    Article  Google Scholar 

  70. Wang Z, Wang G, Han Y, Feng L, Fan Z, Lei Y, Yang B, Li X, Xiong S, Xing F, Xin M, Du W, Li C, Li Y (2020) Improving cropping systems reduces the carbon footprints of wheat-cotton production under different soil fertility levels. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2020.1720912

    Article  Google Scholar 

  71. Wiedmann T, Minx J (2007) A definition of ‘ carbon footprint. Science 80-:1–7. https://doi.org/10.1088/978-0-750-31040-6

  72. Worldometer (2020) Bangladesh population. https://www.worldometers.info/world-population/bangladesh-population/. Accessed 22 Oct 21

  73. Xiao L, Zhao R, Zhang X (2020) Crop cleaner production improvement potential under conservation agriculture in China: a meta-analysis. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122262

    Article  Google Scholar 

  74. Yousefi M, Damghani AM, Khoramivafa M (2014) Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Sci Total Environ 493:330–335. https://doi.org/10.1016/j.scitotenv.2014.06.004

    Article  CAS  Google Scholar 

  75. Yousefi M, Mahdavi Damghani A, Khoramivafa M (2016) Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran. Environ Sci Pollut Res 23:7390–7397. https://doi.org/10.1007/s11356-015-5964-7

    Article  CAS  Google Scholar 

  76. Zangeneh M, Omid M, Akram A (2010) A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy 35:2927–2933. https://doi.org/10.1016/j.energy.2010.03.024

    Article  Google Scholar 

  77. Zentner RP, Lafond GP, Derksen DA, Nagy CN, Wall DD, May WE (2004) Effects of tillage method and crop rotation on non-renewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies. Soil Tillage Res. 77:125–136. https://doi.org/10.1016/j.still.2003.11.002

    Article  Google Scholar 

  78. Zhang D, Shen J, Zhang F, Li Y, Zhang W (2017) Carbon footprint of grain production in China. Sci Rep. https://doi.org/10.1038/s41598-017-04182-x

    Article  Google Scholar 

  79. Zhang W, Zheng C, Song Z, Deng A, He Z (2015) Farming systems in China: innovations for sustainable crop production. In: Crop physiology: applications for genetic improvement and agronomy, 2nd edn. https://doi.org/10.1016/B978-0-12-417104-6.00003-0

  80. Ziaei SM, Mazloumzadeh SM, Jabbary M (2015) A comparison of energy use and productivity of wheat and barley (case study). J Saudi Soc Agric Sci 14:19–25. https://doi.org/10.1016/j.jssas.2013.04.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Bangladesh Agricultural Research Institute (BARI) authority for financial support and the Regional Laboratory of the Soil Resources Development Insitute (SRDI), Jamalpur for laboratory supports.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M.M. et al. (2022). Designing an Energy Use Analysis and Life Cycle Assessment of the Environmental Sustainability of Conservation Agriculture Wheat Farming in Bangladesh. In: Muthu, S.S. (eds) Environmental Footprints of Crops. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-19-0534-6_5

Download citation

Publish with us

Policies and ethics