Skip to main content

Urban Flood Risk Mapping: A State-of-the-Art Review on Quantification, Current Practices, and Future Challenges

  • Chapter
  • First Online:
Advances in Urban Design and Engineering

Part of the book series: Design Science and Innovation ((DSI))

Abstract

Floods are one of the most frequently occurring natural disasters, causing widespread devastation, economic damage, and threat to human lives. Hydrologic impacts of climate change and intensification of urbanization are two root causes of increased flood occurrences, and recent research trends are oriented towards understanding these aspects. Due to rapid urbanization, the population of cities across the world has increased exponentially leading to improperly planned developments. On the other hand, climate change due to natural and anthropogenic activities in our environment has resulted in spatiotemporal changes in rainfall patterns. The combined effect of both aggravates the vulnerability of urban populations to floods. In this context, an efficient and effective flood risk management with its core component as flood risk mapping is essential for adaptation and mitigation of flood disasters. Urban flood risk mapping involves zoning of an urban region based on its flood risk, which depicts the spatiotemporal pattern of frequency and severity of hazards, exposure to hazards, and degree of vulnerability of the population in terms of socio-economic, environmental, and infrastructural aspects. Although vulnerability is a key component of risk, its assessment and mapping are often less advanced than hazard mapping and quantification. A synergic effort from technical experts and social scientists is vital for enhancing the effectiveness of flood risk management programmes. Despite an increasing volume of quality research conducted on urban flood risk, a comprehensive multidisciplinary approach towards flood risk mapping still remains neglected, due to which many of the input parameters and definitions of flood risk concepts are imprecise. Thus, the objectives of this review are to introduce and precisely define the relevant input parameters, concepts, and terms in urban flood risk mapping, along with its methodology, current status, and future scope. The review also aims at providing thought-provoking insights to potential future researchers and flood management professionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger WN (2000) Institutional adaptation to environmental risk under the transition in Vietnam. Ann Assoc Am Geogr 90:738–758. https://doi.org/10.1111/0004-5608.00220

    Article  Google Scholar 

  • Adger WN (2006) Vulnerability. Glob Environ Chang 16:268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006

    Article  Google Scholar 

  • Adger WN, Brooks N, Kelly M, Bentham G, Agnew M, Eriksen S (2004) New indicators of vulnerability and adaptive capacity. Tech. Rep. 7. Tyndall Centre for Climate Change Research, Norwich

    Google Scholar 

  • Afshari S, Tavakoly AA, Rajib MA, Zheng X, Follum ML, Omranian E, Fekete BM (2018) Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. J Hydrol 556:539–556

    Article  Google Scholar 

  • Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47:107–124. https://doi.org/10.1016/s0169-555x(02)00083-1

    Article  Google Scholar 

  • Alfieri L, Feyen L, Di Baldassarre G (2016) Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Clim Chang 136(3–4):507–521

    Article  Google Scholar 

  • Alves A, Vojinovic Z, Kapelan Z, Sanchez A, Gersonius B (2020) Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci Total Environ 703:134980

    Google Scholar 

  • Amann B, Szidat S, Grosjean M (2015) A millennial-long record of warm season precipitation and flood frequency for the North-western Alps inferred from varved lake sediments: implications for the future. Quatern Sci Rev 115:89–100

    Article  Google Scholar 

  • Apel H, Aronica GT, Kreibich H, Thieken AH (2009) Flood risk analyses—how detailed do we need to be? Nat Hazards 49:79–98. https://doi.org/10.1007/s11069-008-9277-8

    Article  Google Scholar 

  • Arnell NW, Gosling SN (2016) The impacts of climate change on river flood risk at the global scale. Clim Chang 134(3):387–401. https://doi.org/10.1007/s10584-014-1084-5

  • Aroca-Jiménez E, Bodoque JM, García JA, Díez-Herrero A (2018) A quantitative methodology for the assessment of the regional economic vulnerability to flash floods. J Hydrol 565:386–399

    Article  Google Scholar 

  • Bajard M, Poulenard J, Sabatier P, Bertrand Y, Crouzet C, Ficetola GF, et al (2020) Pastoralism increased vulnerability of a subalpine catchment to flood hazard through changing soil properties. Palaeogeogr Palaeoclimatol Palaeoecol 538:109462

    Google Scholar 

  • Baker VR, Kochel RC, Patton PC (1988) Flood geomorphology, 1st edn. Wiley, New York

    Google Scholar 

  • Barredo JI, Engelen G (2010) Land use scenario modeling for flood risk mitigation. Sustainability 2:1327–1344. https://doi.org/10.3390/su2051327

    Article  Google Scholar 

  • Barroca B, Bernardara P, Mouchel JM, Hubert G (2006) Indicators for identification of urban flooding vulnerability. Nat Hazard Earth Syst Sci 6:553–561. https://doi.org/10.5194/nhess-6-553-2006

    Article  Google Scholar 

  • Bates PD, Horritt MS (2005) Modelling wetting and drying processes in hydraulic models. In: Bates PD, Lane SN, Ferguson RI (eds) Computational fluid dynamics: applications in environmental hydraulics, chap. 6, 1st edn. Wiley, England. https://doi.org/10.1002/0470015195

  • Bates PD, De Roo APJ (2000) A simple raster-based model for flood inundation simulation. J Hydrol 236:54–77

    Article  Google Scholar 

  • Benito G, Lang M, Barriendos M, Llasat MC, Francés F, Ouarda T, Varyl T, Enzel Y, Bárdossy A, Coeur D, Bobée B (2004) Use of Systematic, palaeoflood and historical data for the improvement of flood risk estimation. Rev Sci Methods Nat Hazards 31:623–643

    Google Scholar 

  • Berrouet LM, Machado J, Villegas-Palacio C (2018) Vulnerability of socio-ecological systems: a conceptual Framework. Ecol Ind 84:632–647

    Article  Google Scholar 

  • Birkmann J (2007) Risk and vulnerability indicators at different scales: applicability, usefulness and policy implications. Environ Hazards 7:20–31. https://doi.org/10.1016/j.envhaz.2007.04.002

    Article  Google Scholar 

  • Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk: natural hazards, people’s vulnerability and disasters, 1st edn. Routledge, London, New York

    Google Scholar 

  • Blöschl G, Hall J, Parajka J, Perdigão RA, Merz B, Arheimer B et al (2017) Changing climate shifts timing of European floods. Science 357(6351):588–590

    Article  Google Scholar 

  • Blum AG, Ferraro PJ, Archfield SA, Ryberg KR (2020) Causal effect of impervious cover on annual flood magnitude for the United States. Geophys Res Lett 47(5)

    Google Scholar 

  • Bogardi JJ, Birkmann J (2005) Vulnerability assessment: the first step towards sustainable risk reduction. In: Malzahn D, Plapp T (eds) Disasters and society: from hazard assessment to risk reduction. Logos Verlag Berlin, Berlin, pp 75–82

    Google Scholar 

  • Bohle H-G (2001) Vulnerability and criticality: perspectives from social geography. In: Newsletter of the international human dimensions programme on global environmental change, pp 1–6

    Google Scholar 

  • Bollin C, Cárdenas C, Hahn H, Vatsa KS (2003) Disaster risk management by communities and local governments. Inter-American Development Bank, Washington, D.C.

    Google Scholar 

  • Boonya-Aroonnet S, Weesakul S, Mark O (2002) Modelling of urban flooding in Bangkok. In: Proceedings of the ninth international conference on urban drainage (9ICUD), Portland, USA

    Google Scholar 

  • Bornstein RD (1968) Observations of the urban heat island effect in New York City. J Appl Meteorol 7:575–582. https://doi.org/10.1175/1520-0450(1968)007%3c0575:OOTUHI%3e2.0.CO;2

    Article  Google Scholar 

  • Bouwer LM, Bubeck P, Aerts JC (2010) Changes in future flood risk due to climate and development in a Dutch polder area. Glob Environ Chang 20(3):463–471

    Article  Google Scholar 

  • Bowering EA, Peck AM, Simonovic SP (2014) A flood risk assessment to municipal infrastructure due to changing climate part I: methodology. Urban Water J 11:20–30. https://doi.org/10.1080/1573062X.2012.758293

    Article  Google Scholar 

  • Brath A, Castellarin A, Montanari A (2003) Assessing the reliability of regional depth-duration-frequency equations for gaged and ungaged sites. Water Resour Res 39:1–12. https://doi.org/10.1029/2003WR002399

    Article  Google Scholar 

  • Brody SD, Blessing R, Sebastian A, Bedient P (2013) Delineating the reality of flood risk and loss in Southeast Texas. Nat Hazard Rev 14:89–97. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000091

    Article  Google Scholar 

  • Brooks N, Adger WN, Kelly PM (2005) The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob Environ Chang 15:151–163. https://doi.org/10.1016/j.gloenvcha.2004.12.006

  • Brooks N (2003) Vulnerability, risk and adaptation: a conceptual framework. Tech. Rep. Working Paper 38. Tyndall Centre for Climate Change Research, Norwich

    Google Scholar 

  • Buishand TA (1991) Extreme rainfall estimation by combining data from several sites. Hydrol Sci J 36:345–365. https://doi.org/10.1080/02626669109492519

  • Camarasa-Belmonte A, Soriano-García J (2012) Flood risk assessment and mapping in peri-urban Mediterranean environments using hydro-geomorphology. Application to ephemeral streams in the Valencia region (eastern Spain). Landsc Urban Plan 104:189–200. https://doi.org/10.1016/j.landurbplan.2011.10.009

  • Campbell E, Marks R, Conn C (2020) Spatial modeling of the biophysical and economic values of ecosystem services in Maryland, USA. Ecosyst Serv 43:101093

    Google Scholar 

  • Cardona OD (1999) Environmental management and disaster prevention: two related topics: a holistic risk assessment and management approach. In: Ingleton J (ed) Natural disaster management. Tudor Rose, London

    Google Scholar 

  • Carrasco AR, Ferreira Ó, Matias A, Freire P (2012) Flood hazard assessment and management of fetch-limited coastal environments. Ocean Coast Manag 65:15–25

    Article  Google Scholar 

  • Chakraborty J, Tobin GA, Montz BE (2005) Population evacuation: assessing spatial variability in geophysical risk and social vulnerability to natural hazards. Nat Hazard Rev 6:23–33

    Article  Google Scholar 

  • Chambers R, Conway GR (1992) Sustainable rural livelihoods: practical concepts for the 21st century. In: IDS Discussion Paper 296, Institute of Development Studies, University of Sussex, Brighton, UK, pp 1–42

    Google Scholar 

  • Chandel G (2010) Vulnerability assessment to natural and environmental hazards. Master’s thesis, Indian Institute of Technology Bombay, Mumbai, India

    Google Scholar 

  • Chang H, Franczyk J (2008) Climate change, land-use change, and floods: toward an integrated assessment. Geogr Compass 2:1549–1579. https://doi.org/10.1111/j.1749-8198.2008.00136.x

    Article  Google Scholar 

  • Chen W, Huang G, Zhang H, Wang W (2018) Urban inundation response to rainstorm patterns with a coupled hydrodynamic model: a case study in Haidian Island, China. J Hydrol 564:1022–1035

    Article  Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Distributed flow routing. In: Applied hydrology, chap. 9, 1st edn. Tata McGraw-Hill, New Delhi, pp 272–309

    Google Scholar 

  • Chowdhury JU, Karim MF (1996) A risk-based zoning of storm surge prone area of the Ganges Tidal Plain. J Civ Eng 24:221–233

    Google Scholar 

  • Collins TW, Grineski SE, Aguilar M (2009) Vulnerability to environmental hazards in the Ciudad Juárez (Mexico)—El Paso (USA) metropolis: a model for spatial risk assessment in transnational context. Appl Geogr 29:448–461. https://doi.org/10.1016/j.apgeog.2008.10.005

    Article  Google Scholar 

  • Costabile P, Costanzo C, De Lorenzo G, Macchione F (2020) Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model? J Hydrol 580:124231

    Google Scholar 

  • Coutu GW, Vega C (2007) Impacts of land use changes on runoff generation in the east branch of the Brandywine creek watershed using a GIS-based hydrologic model. Middle States Geogr 40:142–149

    Google Scholar 

  • CRED/UNISDR (2015) The human cost of weather-related disasters: 1995–2015. Centre for Research on the Epidemiology of Disasters, Brussels, Belgium

    Google Scholar 

  • Crichton D (1999) The risk triangle. In: Ingleton J (ed) Natural disaster management. Tudor Rose, London, pp 102–103

    Google Scholar 

  • Cunderlik JM, Simonovic SP (2007) Inverse flood risk modelling under changing climatic conditions. Hydrol Process Int J 21(5):563–577

    Article  Google Scholar 

  • Cutter SL (1996) Vulnerability to environmental hazards. Progr Human Geogr 20:529–539

    Google Scholar 

  • Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84:242–261. https://doi.org/10.1111/1540-6237.8402002

    Article  Google Scholar 

  • Cutter SL, Mitchell JT, Scott MS (2000) Revealing the vulnerability of people and places: a case study of Georgetown County, South Carolina. Ann Assoc Am Geogr 90:713–737. https://doi.org/10.1111/0004-5608.00219

    Article  Google Scholar 

  • Darabi H, Choubin B, Rahmati O, Haghighi AT, Pradhan B, Kløve B (2019) Urban flood risk mapping using the GARP and QUEST models: a comparative study of machine learning techniques. J Hydrol 569:142–154

    Article  Google Scholar 

  • Davidson RA, Shah HC (1997) An urban earthquake disaster risk index. Tech. Rep. 121, The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA

    Google Scholar 

  • Dewan A (2013) Floods in a megacity: geospatial techniques in assessing hazards, risk and vulnerability. Springer, Dordrecht Heidelberg New York London. https://doi.org/10.1007/978-94-007-5875-9

  • DFID (1999) Sustainable livelihoods guidance sheets: framework, Section 2. Tech. Rep. Subsection 2.1. Department for International Development, London

    Google Scholar 

  • Di Baldassarre G (2012) Floods in a changing climate: inundation modelling, 1st edn. Cambridge University Press, New York. https://doi.org/10.1017/CBO9781139088411

  • Di Baldassarre G, Castellarin A, Montanari A, Brath A (2009) Probability-weighted hazard maps for comparing different flood risk management strategies: a case study. Nat Hazards 50(3):479–496

    Article  Google Scholar 

  • Dibben C, Chester DK (1999) Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. J Volcanol Geotherm Res 92:133–150. https://doi.org/10.1016/S0377-0273(99)00072-4

    Article  Google Scholar 

  • Dimitriadis P, Tegos A, Oikonomou A, Pagana V, Koukouvinos A, Mamassis N, Koutsoyiannis D, Efstratiadis A (2016) Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. J Hydrol 534:478–492. https://doi.org/10.1016/j.jhydrol.2016.01.020

  • Dong S, Esmalian A, Farahmand H, Mostafavi A (2020) An integrated physical-social analysis of disrupted access to critical facilities and community service-loss tolerance in urban flooding. Comput Environ Urban Syst 80:101443

    Google Scholar 

  • Dow K (1992) Exploring differences in our common future(s): the meaning of vulnerability to global environmental change. Geoforum 23:417–436. https://doi.org/10.1016/0016-7185(92)90052-6

    Article  Google Scholar 

  • Durrans S, Kirby JT (2004) Regionalization of extreme precipitation estimates for the Alabama rainfall atlas. J Hydrol 295:101–107. https://doi.org/10.1016/j.jhydrol.2004.02.021

    Article  Google Scholar 

  • Ebert A, Kerle N (2008) Urban social vulnerability assessment using object-oriented analysis of remote sensing and GIS Data. A case study for Tegucigalpa, Honduras. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII. Part B7. International Society for Photogrammetry and Remote Sensing, pp 1307–1312

    Google Scholar 

  • Erena SH, Worku H, De Paola F (2018) Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. J Hydrol Reg Stud 19:224–239

    Article  Google Scholar 

  • Fedeski M, Gwilliam J (2007) Urban sustainability in the presence of flood and geological hazards: the development of a GIS-based vulnerability and risk assessment methodology. Landsc Urban Plan 83:50–61

    Article  Google Scholar 

  • FEMA (2012) What is risk MAP?, Tech. Rep. 1-877-FEMA MAP, Federal Emergency Management Authority, Washington, D.C., USA

    Google Scholar 

  • Few R, Flooding, vulnerability and coping strategies: local responses to a global threat. Prog Dev Stud, 3, 43–58. https://doi.org/10.1191/1464993403ps049ra

  • Feyen L, Dankers R, Bódis K, Salamon P, Barredo JI (2011) Fluvial flood risk in Europe in present and future climates. Clim Chang 112:47–62. https://doi.org/10.1007/s10584-011-0339-7

    Article  Google Scholar 

  • Fiebiger G (1997) Hazard mapping in Austria. J Torrent Avalanche Landslide Rockfall Eng 61:1531–2164

    Google Scholar 

  • Flax LK, Jackson RW, Stein DN (2002) Community vulnerability assessment tool methodology. Nat Hazard Rev 3:163–176. https://doi.org/10.1061/(asce)1527-6988(2002)3:4(163)

    Article  Google Scholar 

  • FLO-2D (2009) FLO-2D mapper manual, Version 2009. Arizona, USA

    Google Scholar 

  • Frank E, Ostan A, Coccato M, Stelling GS (2001) Use of an integrated one dimensional-two dimensional hydraulic modelling approach for flood hazard and risk mapping. In: Falconer RA, B WR (eds) River basin management, vol 50 of Transactions on ecology and the environment. WIT Press, Southampton, pp 99–108. https://doi.org/10.2495/RM010091

  • Füssel H-M (2007) Vulnerability: a generally applicable conceptual framework for climate change research. Glob Environ Chang 17:155–167. https://doi.org/10.1016/j.gloenvcha.2006.05.002

    Article  Google Scholar 

  • Ghosh M, Mohanty MP, Kishore P, Karmakar S (2020) Performance evaluation of potential inland flood management options through a three-way linked hydrodynamic modelling framework for a coastal urban watershed. Hydrol Res

    Google Scholar 

  • Gilles D, Moore M (2010) Review of hydraulic flood modeling software used in Belgium, The Netherlands, and the United Kingdom. International Perspectives in Water Resource Management, IIHR – Hydroscience & Engineering, University of Iowa

    Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Design hyetograph analysis with 3-copula function. Hydrol Sci J 51:223–238. https://doi.org/10.1623/hysj.51.2.223

    Article  Google Scholar 

  • Haer T, Husby TG, Botzen WW, Aerts JC (2020) The safe development paradox: an agent-based model for flood risk under climate change in the European Union. Glob Environ Chang 60:102009

    Google Scholar 

  • Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Chang 3:802–806

    Article  Google Scholar 

  • Hallegatte S, Henriet F, Patwardhan A, Narayanan K, Ghosh S, Karmakar S, Patnaik U, Abhayankar A, Pohit S, Corfee-Morlot J, Herweijer C, Ranger N, Bhattacharya S, Bachu M, Priya S, Dhore K, Rafique F, Mathur P, Naville N (2010) Flood risks, climate change impacts and adaptation benefits in Mumbai: an initial assessment of socio-economic consequences of present and climate change induced flood risks and of possible adaptation options, Environment Working Papers, Tech. Rep. 27, OECD Publishing

    Google Scholar 

  • He BJ, Zhu J, Zhao DX, Gou ZH, Qi JD, Wang J (2019) Co-benefits approach: opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 86:147–157

    Article  Google Scholar 

  • Hernández Ayala JJ, Keellings D, Waylen PR, Matyas CJ (2017) Extreme floods and their relationship with tropical cyclones in Puerto Rico. Hydrol Sci J 62(13):2103–2119

    Article  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3:816–821

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Bindi M, Brown S, Camilloni I, Diedhiou A, et al (2018) Impacts of 1.5 C global warming on natural and human systems. Global warming of 1.5°C. An IPCC Special Report

    Google Scholar 

  • Hou J, Kang Y, Hu C, Tong Y, Pan B, Xia J (2020) A GPU-based numerical model coupling hydrodynamical and morphological processes. Int J Sediment Res

    Google Scholar 

  • Huang J, Liu Y, Ma L (2011) Assessment of regional vulnerability to natural hazards in China using a DEA model. Int J Disast Risk Sci 2:41–48. https://doi.org/10.1007/s13753-011-0010-y

    Article  Google Scholar 

  • Ikeuchi H, Hirabayashi Y, Yamazaki D, Muis S, Ward PJ, Winsemius HC et al (2017) Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: model development and its application to 2007 Cyclone Sidr in Bangladesh. J Adv Model Earth Syst 9(4):1847–1862

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: The Scientific Basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working Group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, 151 pp.

    Google Scholar 

  • Jafarzadegan K, Merwade V (2019) Probabilistic floodplain mapping using HAND-based statistical approach. Geomorphology 324:48–61

    Article  Google Scholar 

  • Jenkins K, Surminski S, Hall J, Crick F (2017) Assessing surface water flood risk and management strategies under future climate change: Insights from an agent-based model. Sci Total Environ 595:159–168

    Article  Google Scholar 

  • Joshi PM, Sherasia NK, Patel PD (2012) Urban flood mapping by geospatial technique: a case study of Surat City. IOSR J Eng 2:43–51

    Google Scholar 

  • Jung I-W, Chang H, Moradkhani H (2011) Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects. Hydrol Earth Syst Sci 15:617–633. https://doi.org/10.5194/hess-15-617-2011

    Article  Google Scholar 

  • Kalyanapu AJ, Shankar S, Pardyjak ER, Judi DR, Burian SJ (2011) Assessment of GPU computational enhancement to a 2D flood model. Environ Model Softw 26(8):1009–1016

    Article  Google Scholar 

  • Karmakar S, Simonovic SP, Peck A, Black J (2010) An information system for risk-vulnerability assessment to flood. J Geogr Inf Syst 2:129–146

    Google Scholar 

  • Kates RW (1985) The interaction of climate and society. In: Kates RW, Ausubel J, Berberian M (eds) Climate impact assessment: studies of the interaction of climate and society, chap. 1. Wiley, Chichester, UK

    Google Scholar 

  • Kerr RA (2007) Global warming is changing the world. Science 316(5822):188–190

    Article  Google Scholar 

  • Koks EE, Jongman B, Husby TG, Botzen WJW (2015) Combining hazard, exposure and social vulnerability to provide lessons for flood risk management, Enviro Sci Policy 47(42–52):1462–9011. https://doi.org/10.1016/j.envsci.2014.10.013. https://www.sciencedirect.com/science/article/pii/S1462901114002056

  • Kumpulainen S (2006) Vulnerability concepts in hazard and risk assessment. In: Schmidt-Thomé P (ed) Natural and technological hazards and risks affecting the spatial development of European Regions. Geological Survey of Finland special paper, Geological Survey of Finland, pp 65–74

    Google Scholar 

  • Künzler M, Huggel C, Ramírez JM (2012) A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Nat Hazards 64:767–796

    Article  Google Scholar 

  • Lastra J, Fernández E, Díez-Herrero A, Marquínez J (2008) Flood hazard delineation combining geomorphological and hydrological methods: an example in the Northern Iberian Peninsula. Nat Hazards 45:277–293. https://doi.org/10.1007/s11069-007-9164-8

    Article  Google Scholar 

  • Leandro J, Chen AS, Djordjević S, Savić DA (2009) Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. J Hydraul Eng 135(6):495–504

    Article  Google Scholar 

  • Lee CKF, Duncan C, Owen HJF, Pettorelli N (2018) A new framework to assess relative ecosystem vulnerability to climate change. Conserv Lett 11(2):e12372

    Google Scholar 

  • Li G, Zhang F, Jing Y, Liu Y, Sun G (2017) Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Sci Total Environ 596:256–265

    Article  Google Scholar 

  • Li L, Cao R, Wei K, Wang W, Chen L (2019a) Adapting climate change challenge: a new vulnerability assessment framework from the global perspective. J Clean Prod 217:216–224

    Article  Google Scholar 

  • Li Z, Sun Y, Li T, Ding Y, Hu T (2019b) Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 °C of warming. Earth’s Future 7(12):1391–1406

    Google Scholar 

  • Liu YB, Smedt F, Hoffmann L, Pfister L (2005) Assessing land use impacts on flood processes in complex terrain by using GIS and modeling approach. Environ Model Assess 9:227–235

    Google Scholar 

  • Macchione F, Costabile P, Costanzo C, De Santis R (2019) Moving to 3-D flood hazard maps for enhancing risk communication. Environ Model Softw 111:510–522

    Article  Google Scholar 

  • Mahmoud SH, Gan TY (2018) Urbanization and climate change implications in flood risk management: developing an efficient decision support system for flood susceptibility mapping. Sci Total Environ 636:152–167

    Article  Google Scholar 

  • Marchand M (2009) Modelling coastal vulnerability. IOS Press, Amsterdam, Netherlands

    Google Scholar 

  • Mark O, Apirumanekul C, Kamal MM, Praydal G (2001) Modelling of urban flooding in Dhaka City. In: Brashear RW, Maksimovic C (eds) Proceedings of urban drainage modeling, chap. 31. American Society of Civil Engineers, pp 333–343. https://doi.org/10.1061/40583(275)32

  • Martínez C, Sanchez A, Toloh B, Vojinovic Z (2018) Multi-objective evaluation of urban drainage networks using a 1D/2D flood inundation model. Water Resour Manag 32(13):4329–4343

    Article  Google Scholar 

  • Martins R, Leandro J, Djordjević S (2018) Influence of sewer network models on urban flood damage assessment based on coupled 1D/2D models. J Flood Risk Manag 11:S717–S728

    Article  Google Scholar 

  • Masood M, Takeuchi K (2011) Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model. Nat Hazards 61:757–770. https://doi.org/10.1007/s11069-011-0060-x

    Article  Google Scholar 

  • McMillan HK, Brasington J (2007) Reduced complexity strategies for modelling urban floodplain inundation. Geomorphology 90:226–243

    Article  Google Scholar 

  • McMillan HK, Brasington J (2008) End-to-end flood risk assessment: a coupled model cascade with uncertainty estimation. Water Resour Res 44:W03 419

    Google Scholar 

  • Meyer V, Scheuer S, Haase D (2008) A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat Hazards 48:17–39

    Article  Google Scholar 

  • Miller MM, Shirzaei M (2019) Land subsidence in Houston correlated with flooding from Hurricane Harvey. Remote Sens Environ 225:368–378

    Article  Google Scholar 

  • Moftakhari H, Schubert JE, AghaKouchak A, Matthew RA, Sanders BF (2019) Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Adv Water Resour 128:28–38

    Article  Google Scholar 

  • Mohanty MP, Sherly MA, Karmakar S, Ghosh S (2018) Regionalized design rainfall estimation: an appraisal of inundation mapping for flood management under data-scarce situations. Water Resour Manag 32(14):4725–4746

    Article  Google Scholar 

  • Mohanty MP, Vittal H, Yadav V, Ghosh S, Rao GS, Karmakar S (2020a) A new bivariate risk classifier for flood management considering hazard and socio-economic dimensions. J Environ Manag 255:109733

    Google Scholar 

  • Mohanty MP, Sherly MA, Ghosh S, Karmakar S (2020b) Tide-rainfall flood quotient: an incisive measure of comprehending a region’s response to storm-tide and pluvial flooding. Environ Res Lett 15(6):064029

    Google Scholar 

  • Mohanty MP (2019) A comprehensive mapping of flood risk in changing climate: an application to Jagatsinghpur District, Odisha. Ph.D. Thesis, Indian Institute of Technology Bombay, Mumbai, India

    Google Scholar 

  • Motevalli A, Vafakhah M (2016) Flood hazard mapping using synthesis hydraulic and geomorphic properties at watershed scale. Stoch Environ Res Risk Assess 30(7):1889–1900

    Article  Google Scholar 

  • Müller A (2012) Flood risks in a dynamic urban agglomeration: a conceptual and methodological assessment framework. Nat Hazards 65:1931–1950. https://doi.org/10.1007/s11069-012-0453-5

    Article  Google Scholar 

  • Mustow SE, Burgess PF, Walker N (2005) Practical methodology for determining the significance of impacts on the water environment. Water Environ J 19:100–108. https://doi.org/10.1111/j.1747-6593.2005.tb00557.x

  • NDMA (2010) Management of urban flooding. National Disaster Management Guidelines, National Disaster Management Authority, Government of India, NDMA Bhawan, New Delhi

    Google Scholar 

  • Neal J, Keef C, Bates P, Beven K, Leedal D (2013) Probabilistic flood risk mapping including spatial dependence. Hydrol Process 27:1349–1363. https://doi.org/10.1002/hyp.9572

    Article  Google Scholar 

  • Nirupama N, Simonovic SP (2007) Increase of flood risk due to urbanization: a Canadian example. Nat Hazards 40:25–41. https://doi.org/10.1007/s11069-006-0003-0

    Article  Google Scholar 

  • Noh SJ, Lee JH, Lee S, Kawaike K, Seo DJ (2018) Hyper-resolution 1D–2D urban flood modelling using LiDAR data and hybrid parallelization. Environ Model Softw 103:131–145

    Article  Google Scholar 

  • Noy I, Yonson R (2018) Economic vulnerability and resilience to natural hazards: a survey of concepts and measurements. Sustainability 10(8):2850

    Article  Google Scholar 

  • O’Brien JS, Garcia R (2012) New approaches for alluvial fan flood hazard. In: French RH, Miller JJ (eds) Flood hazard identification and mitigation in semi- and arid environments. World Scientific Publishing, Singapore, pp 59–88

    Google Scholar 

  • O’Brien K, Leichenko R, Kelkar U, Venema H, Aandahl G, Tompkins H, Akram J, Bhadwal S, Barg S, Nygaard L, West J (2004) Mapping vulnerability to multiple stressors: climate change and globalization in India. Glob Environ Chang 14:303–313

    Google Scholar 

  • O’Donnell EC, Thorne CR (2020) Drivers of future urban flood risk. Philos Trans R Soc A 378(2168):20190216

    Article  Google Scholar 

  • OFEE (1997) Consideration of flood hazards for activities with spatial impact. In: Loat R, Petrascheck A (eds) The environment in practice VU-7505-E. Federal Office for the Environment FOEN, Bern

    Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24. https://doi.org/10.1002/qj.49710845502

    Article  Google Scholar 

  • Olivera F, Maidment D (1999) Geographic Information Systems (GIS)-based spatially distributed model for runoff routing. Water Resour Res 35:1155–1164. https://doi.org/10.1029/1998WR900104

    Article  Google Scholar 

  • Oppenheimer M, Campos M, Warren R, Birkmann J, Luber G, O’Neill B, Takahashi K (2014) Emergent risks and key vulnerabilities. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1039-1099. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap19_FINAL.pdf

  • Ouyang M, Tian H, Wang Z, Hong L, Mao Z (2019) Critical infrastructure vulnerability to spatially localized failures with applications to Chinese railway system. Risk Anal 39(1):180–194

    Article  Google Scholar 

  • Overeem A, Buishand A, Holleman I (2008) Rainfall depth-duration-frequency curves and their uncertainties. J Hydrol 348:124–134. https://doi.org/10.1016/j.jhydrol.2007.09.044

    Article  Google Scholar 

  • Paprotny D, Terefenko P (2017) New estimates of potential impacts of sea level rise and coastal floods in Poland. Nat Hazards 85(2):1249–1277

    Article  Google Scholar 

  • Pathak S, Liu M, Jato-Espino D, Zevenbergen C (2020) Social, economic and environmental assessment of urban sub-catchment flood risks using a multi-criteria approach: a case study in Mumbai City, India. J Hydrol 125216

    Google Scholar 

  • Patro S, Chatterjee C, Mohanty S, Singh R, Raghuwanshi NS (2009) Flood inundation modeling using MIKE FLOOD and remote sensing data. J Indian Soc Remote Sens 37:107–118. https://doi.org/10.1007/s12524-009-0002-1

    Article  Google Scholar 

  • Paul S, Ghosh S, Oglesby R, Pathak A, Chandrasekharan A, Ramsankaran RAAJ (2016) Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci Rep 6(1):1–10

    Article  Google Scholar 

  • Peck AM, Bowering EA, Simonovic SP (2014) A flood risk assessment to municipal infrastructure due to changing climate part II: case study. Urban Water J 11:519–531. https://doi.org/10.1080/1573062X.2013.781760

    Article  Google Scholar 

  • Peck A, Karmakar S, Simonovic SP (2007) Physical, economical, infrastructural and social flood risk—vulnerability analyses in GIS. Water Resources Research Report, The University of Western Ontario, Canada

    Google Scholar 

  • Poretti I, De Amicis M (2011) An approach for flood hazard modelling and mapping in the medium Valtellina. Nat Hazards Earth Syst Sci 11:1141–1151. https://doi.org/10.5194/nhess-11-1141-2011

    Article  Google Scholar 

  • Prinos P, Kortenhaus A, Swerpel B, Jiménez JA, Samuels P (2008) Review of flood hazard mapping. In: Integrated flood risk analysis and management methodologies. FLOODsite, HR Wallingford, UK

    Google Scholar 

  • Prodanovic P, Simonovic SP (2004) Generation of synthetic design storms for the Upper Thames River Basin. Water Resources Research Report 15, Department of Civil and Environmental Engineering, The University of Western Ontario

    Google Scholar 

  • Rahman A, Weinmann P, Hoang T, Laurenson E (2002) Monte Carlo simulation of flood frequency curves from rainfall. J Hydrol 256:196–210. https://doi.org/10.1016/S0022-1694(01)00533-9

    Article  Google Scholar 

  • Ranger N, Hallegatte S, Bhattacharya S, Bachu M, Priya S, Dhore K, Rafique F, Mathur P, Naville N, Henriet F et al (2011) An assessment of the potential impact of climate change on flood risk in Mumbai. Clim Change 104:139–167

    Article  Google Scholar 

  • Rossman LA (2006) Storm water management model quality assurance report: dynamic wave flow routing. Tech. Rep. EPA/600/R-06/097 U.S. Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • Rygel L, O’sullivan D, Yarnal B (2006) A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitig Adapt Strat Glob Chang 11:741–764. https://doi.org/10.1007/s11027-006-0265-6

  • Saein AF, Saen RF (2012) Assessment of the site effect vulnerability within urban regions by data envelopment analysis: a case study in Iran. Comput Geosci 48:280–288

    Article  Google Scholar 

  • Samela C, Troy TJ, Manfreda S (2017) Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv Water Resour 102:13–28

    Article  Google Scholar 

  • Sanders BF, Schubert JE (2019) PRIMo: parallel raster inundation model. Adv Water Resour 126:79–95

    Article  Google Scholar 

  • Sanyal J, Lu XX (2006) GIS-based flood hazard mapping at different administrative scales: a case study in Gangetic West Bengal, India. Singap J Trop Geogr 27:207–220

    Article  Google Scholar 

  • Seenath A, Wilson M, Miller K (2016) Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: which is better for guiding coastal management? Ocean Coast Manag 120:99–109

    Article  Google Scholar 

  • Seppänen H, Luokkala P, Zhang Z, Torkki P, Virrantaus K (2018) Critical infrastructure vulnerability—a method for identifying the infrastructure service failure interdependencies. Int J Crit Infrastruct Prot 22:25–38

    Article  Google Scholar 

  • Shahapure SS, Eldho TI, Rao EP (2010) Coastal urban flood simulation using FEM, GIS and remote sensing. Water Resour Manag 24:3615–3640. https://doi.org/10.1007/s11269-010-9623-y

    Article  Google Scholar 

  • Shastri H, Paul S, Ghosh S, Karmakar S (2015) Impacts of urbanization on Indian summer monsoon rainfall extremes. J Geophys Res Atmos 120(2):496–516

    Article  Google Scholar 

  • Shen Y, Morsy MM, Huxley C, Tahvildari N, Goodall JL (2019) Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall. J Hydrol 579:124159

    Google Scholar 

  • Sherly MA, Karmakar S, Parthasarathy D, Chan T, Rau C (2015) Disaster vulnerability mapping for a densely populated coastal urban area: an application to Mumbai, India. Ann Assoc Am Geogr 105:1198–1220. https://doi.org/10.1080/00045608.2015.1072792

    Article  Google Scholar 

  • Sherly MA, Karmakar S, Chan T, Rau C (2016) Design rainfall framework using multivariate parametric-nonparametric approach. J Hydrol Eng 21(1):04015049

    Article  Google Scholar 

  • Sherly MA (2016) Urban flood risk mapping of a coastal megacity—an application to Mumbai, India. PhD Thesis, Indian Institute of Technology Bombay, India, and Monash University, Australia

    Google Scholar 

  • Shiau J-T, Chen C-N, Tsai C-T (2011) Physiographic drainage-inundation model based flooding vulnerability assessment. Water Resour Manag 26:1307–1323

    Article  Google Scholar 

  • Simões NE, Ochoa-Rodríguez S, Wang L-P, Pina RD, Marques AS, Onof C, Leitão JP (2015) Stochastic urban Pluvial flood hazard maps based upon a spatial-temporal rainfall generator. Water 7:3396. https://doi.org/10.3390/w7073396

  • Simonović SP (2012) Floods in a changing climate: risk management. Cambridge University Press

    Book  Google Scholar 

  • Sivapalan M, Blöschl G (1998) Transformation of point rainfall to areal rainfall: intensity-duration-frequency curves. J Hydrol 204:150–167. https://doi.org/10.1016/s0022-1694(97)00117-0

    Article  Google Scholar 

  • Slovic P (1987) Perception of risk. Science 236:280–285

    Article  Google Scholar 

  • Smith A, Bates PD, Wing O, Sampson C, Quinn N, Neal J (2019) New estimates of flood exposure in developing countries using high-resolution population data. Nat Commun 10(1):1–7

    Article  Google Scholar 

  • Sun D, Yang H, Guan D, Yang M, Wu J, Yuan F et al (2018) The effects of land use change on soil infiltration capacity in China: a meta-analysis. Sci Total Environ 626:1394–1401

    Article  Google Scholar 

  • Te Linde AH, Bubeck P, Dekkers JEC, De Moel H, Aerts JCJH (2011) Future flood risk estimates along the river Rhine. Nat Hazard 11(2):459

    Article  Google Scholar 

  • Teng J, Jakeman AJ, Vaze J, Croke BF, Dutta D, Kim S (2017) Flood inundation modelling: a review of methods, recent advances and uncertainty analysis. Environ Model Softw 90:201–216

    Article  Google Scholar 

  • Thouret J-C, Enjolras G, Martelli K, Santoni O, Luque JA, Nagata M, Arguedas A, Macedo L (2013) Combining criteria for delineating lahar- and flash-flood-prone hazard and risk zones for the city of Arequipa, Peru. Nat Hazards Earth Syst Sci 13:339–360

    Article  Google Scholar 

  • Tingsanchali T, Karim F (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol Sci J 55:145–161

    Article  Google Scholar 

  • Toonen WH, Munoz SE, Cohen KM, Macklin MG (2020) High-resolution sedimentary Paleoflood records in Alluvial River environments: a review of recent methodological advances and application to flood hazard assessment. In: Palaeohydrology. Springer, Cham, pp 213–228

    Google Scholar 

  • Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Chang 5:725–730. https://doi.org/10.1038/NCLIMATE2657

    Article  Google Scholar 

  • Trenberth K, Jones P, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick J, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, chap. 3. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML et al (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci USA 100:8074–8079

    Article  Google Scholar 

  • Tyrna B, Assmann A, Fritsch K, Johann G (2018) Large-scale high-resolution pluvial flood hazard mapping using the raster-based hydrodynamic two-dimensional model FloodAreaHPC. J Flood Risk Manag 11:S1024–S1037

    Article  Google Scholar 

  • UN/ISDR (2004) Living with risk: a global review of disaster reduction initiatives, 2004 version, vol 1, New York and Geneva, 2004

    Google Scholar 

  • UNDESA (2015) World urbanization prospects: The 2014 revision, Tech. Rep. ST/ESA/SER.A/352, United Nations, Department of Economic and Social Affairs, Population Division, New York, USA

    Google Scholar 

  • UNDHA (1992) Internationally agreed glossary of basic terms related to disaster management, United Nations, United Nations Department of Humanitarian Affairs

    Google Scholar 

  • USDA (2001) Stream corridor restoration principles, processes, and practices, Part 653 of the national engineering handbook. The Federal Interagency Stream Restoration Working Group, Washington D.C., USA

    Google Scholar 

  • USBR (1998) Downstream hazard classification guidelines. ACER Technical Memorandum 11. Denver, Colorado

    Google Scholar 

  • Verstraten L, Wasko C, Ashford G, Sharma A (2019) Sensitivity of Australian roof drainage structures to design rainfall variability and climatic change. Build Environ 161:106230

    Google Scholar 

  • Vojinovic Z, Abbott MB (2012) Flood risk and social justice—from quantitative to qualitative flood risk assessment and mitigation, Urban hydroinformatics series. IWA Publishing, London

    Google Scholar 

  • Vojinovic Z, Hammond M, Golub D, Hirunsalee S, Weesakul S, Meesuk V, Medina N, Sanchez A, Kumara S, Abbott M (2015) Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand. Nat Hazards 81:589–616

    Article  Google Scholar 

  • Wahl T, Jain S, Bender J, Meyers SD, Luther ME (2015) Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat Clim Chang 5:1093–1097. https://doi.org/10.1038/nclimate273610.1038/nclimate2736. http://www.nature.com/nclimate/journal/v5/n12/abs/nclimate2736.html{#}supplementary-information

  • Wang X, Kinsland G, Poudel D, Fenech A (2019) Urban flood prediction under heavy precipitation. J Hydrol 577:123984

    Google Scholar 

  • Wei Y-M, Fan Y, Lu C, Tsai H-T (2004) The assessment of vulnerability to natural disasters in China by using the DEA method. Environ Impact Assess Rev 24:427–439. https://doi.org/10.1016/j.eiar.2003.12.003

    Article  Google Scholar 

  • Wenzel HG (2013) Rainfall for urban stormwater design, in urban stormwater hydrology. American Geophysical Union, Washington, D. C.

    Google Scholar 

  • Werren G, Reynard E, Lane SN, Balin D (2015) Flood hazard assessment and mapping in semi-arid piedmont areas: a case study in Beni Mellal Morocco. Nat Hazards 81:481–511. https://doi.org/10.1007/s11069-015-2092-0

    Article  Google Scholar 

  • Wilby RL, Keenan R (2012) Adapting to flood risk under climate change. Prog Phys Geogr 36:348–378. https://doi.org/10.1177/0309133312438908

    Article  Google Scholar 

  • Winsemius HC, Aerts JCJH, van Beek LPH, Bierkens MFP, Bouwman A, Jongman B, Kwadijk JCJ, Ligtvoet W, Lucas PL, van Vuuren DP, Ward PJ (2015) Global drivers of future river flood risk. Nat Clim Chang. Advance online publication. http://doi.org/10.1038/nclimate289310.1038/nclimate2893. http://www.nature.com/nclimate/journal/vaop/ncurrent/abs/nclimate2893.html{#}supplementary-information

  • Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk: natural hazards, 2nd edn. People’s vulnerability and disaster, Routledge, London

    Google Scholar 

  • WMO (2008) Urban flood risk management: a tool for integrated flood management, flood management tools series, APFM Technical Document 11, World Meteorological Organisation

    Google Scholar 

  • Wu SY, Yarnal B, Fisher A (2002) Vulnerability of coastal communities to sea-level rise: a case study of Cape May County, New Jersy, USA. Clim Res 22:255–270. https://doi.org/10.3354/cr022255

    Article  Google Scholar 

  • Xu X, Wang YC, Kalcic M, Muenich RL, Yang YE, Scavia D (2019) Evaluating the impact of climate change on fluvial flood risk in a mixed-use watershed. Environ Model Softw 122:104031

    Google Scholar 

  • Yalcin E (2019) Two‐dimensional hydrodynamic modelling for urban flood risk assessment using unmanned aerial vehicle imagery: a case study of Kirsehir, Turkey. J Flood Risk Manag 12:e12499

    Google Scholar 

  • Zhang N, Alipour A (2019) Integrated framework for risk and resilience assessment of the road network under inland flooding. Transp Res Rec 2673(12):182–190

    Article  Google Scholar 

  • Zhang L, Singh VP (2007) Gumbel-Hougaard copula for trivariate rainfall frequency analysis. J Hydrol Eng 12:409–419

    Article  Google Scholar 

  • Zhou Z, Wu WB (2009) Local linear quantile estimation for nonstationary time series. Ann Stat 37(5B):2696–2729

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou X, Bai Z, Yang Y (2017) Linking trends in urban extreme rainfall to urban flooding in China. Int J Climatol 37(13):4586–4593

    Article  Google Scholar 

  • Zhou Y, Shen D, Huang N, Guo Y, Zhang T, Zhang Y (2019) Urban flood risk assessment using storm characteristic parameters sensitive to catchment-specific drainage system. Sci Total Environ 659:1362–1369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Karmakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmakar, S., Sherly, M.A., Mohanty, M. (2022). Urban Flood Risk Mapping: A State-of-the-Art Review on Quantification, Current Practices, and Future Challenges. In: Banerji, P., Jana, A. (eds) Advances in Urban Design and Engineering. Design Science and Innovation. Springer, Singapore. https://doi.org/10.1007/978-981-19-0412-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0412-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0411-0

  • Online ISBN: 978-981-19-0412-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics