Skip to main content

All-Optical XNOR and XOR Logic Gates Based on Ultra-Compact Multimode Interference Couplers Using Silicon Hybrid Plasmonic Waveguides

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 878)

Abstract

We present a new structure based on ultra-compact cascaded multimode interference (CS-MMI) structures using silicon hybrid plasmonic waveguides (HPWG) for all-optical XOR and XNOR logic gates. An ultra-compact footprint of 3 × 16 µm2 can be achieved. We show that the contrast ratios for logic 1 and logic 0 for XOR, XNOR gates are about 20 dB for a ultra-high bandwidth of 70 nm, respectively. A large fabrication tolerance can be achieved by using this structure.

Keywords

  • Optical logic gate
  • Multimode interference
  • Silicon on insulator
  • Silicon photonics
  • Hybrid plasmonic waveguide
  • Beam propagation method

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guan, X., et al.: Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt. Lett. 38(16), 3005–3008 (2013)

    CrossRef  Google Scholar 

  2. Li, C., Zhang, M., Xu, H., Tan, Y., Shi, Y., Dai, D.: Subwavelength silicon photonics for on-chip mode-manipulation. PhotoniX 2(1), 1–35 (2021). https://doi.org/10.1186/s43074-021-00032-2

    CrossRef  Google Scholar 

  3. Le, T.-T., Multimode Interference Structures for Photonic Signal Processing. 2010: LAP Lambert Academic Publishing

    Google Scholar 

  4. Hardy, J., Shamir, J.: Optics inspired logic architecture. Opt. Express 15(1), 150–165 (2007)

    CrossRef  Google Scholar 

  5. Yabu, T., et al.: All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J. Quantum Electron. 38(1), 37–46 (2002)

    CrossRef  Google Scholar 

  6. Connelly, M.J.: Semiconductor Optical Amplifiers. Springer, Chem (2002)

    Google Scholar 

  7. Lin, L.Y., Goldstein, E.L., Tkach, R.W.: Free-space micromachined optical switches with submilli-second switching time for large-scale optical crossconnects. IEEE Photonics Technol. Lett. 10(4), 525–527 (1998)

    CrossRef  Google Scholar 

  8. Zeng, S., et al.: Ultrasmall optical logic gates based on silicon periodic dielectric waveguides. Photonics Nanostruct. Fundam. Appl. 8(1), 32–37 (2010)

    CrossRef  Google Scholar 

  9. Ota, M., et al.: Plasmonic-multimode-interference-based logic circuit with simple phase adjustment. Sci. Rep. 6, 24546 (2016)

    CrossRef  Google Scholar 

  10. Li, Z., Chen, Z., Li, B.: Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference. Opt. Express 13(3), 1033–1038 (2005)

    CrossRef  Google Scholar 

  11. Le, T.T., Cahill, L.: All-optical signal processing circuits using silicon waveguides. In: The 7th International Conference on Broadband Communications and Biomedical Applications. Melbourne, Australia (2011)

    Google Scholar 

  12. Le, D., Le, T., Cahill, L.W.: Optical signal processing based on 4×4 multimode interference structures. In: 2018 20th International Conference on Transparent Optical Networks (ICTON) (2018)

    Google Scholar 

  13. Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, New York (1985)

    Google Scholar 

  14. Bachmann, M., Besse, P.A., Melchior, H.: General self-imaging properties in N × N multimode interference couplers including phase relations. Appl. Opt. 33(18), 3905 (1994)

    CrossRef  Google Scholar 

  15. Heaton, J.M., Jenkins, R.M.: General matrix theory of self-imaging in multimode interference(MMI) couplers. IEEE Photonics Technol. Lett. 11(2), 212–214 (1999)

    CrossRef  Google Scholar 

  16. Rodgers, J.S., Ralph, S.E., Kenan, R.P.: Self guiding multimode interference threshold switch. Opt. Lett. 25(23), 1717 (2000)

    CrossRef  Google Scholar 

  17. Le, T.-T.: Multimode Interference Structures for Photonic Signal Processing: Modeling and Design. Lambert Academic Publishing, Germany, ISBN 3838361199 (2010)

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University, Hanoi (VNU) under project number QG.19.58.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Thanh Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, T.H.L., Le, D.T., Nguyen, A.T., Duong, L.M., Le, T.T. (2022). All-Optical XNOR and XOR Logic Gates Based on Ultra-Compact Multimode Interference Couplers Using Silicon Hybrid Plasmonic Waveguides. In: Liang, Q., Wang, W., Liu, X., Na, Z., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2021. Lecture Notes in Electrical Engineering, vol 878. Springer, Singapore. https://doi.org/10.1007/978-981-19-0390-8_135

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0390-8_135

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0389-2

  • Online ISBN: 978-981-19-0390-8

  • eBook Packages: EngineeringEngineering (R0)