Skip to main content

Analysis of the Spatial Distribution of the Second-Harmonic Radiation Generated in a Thin Surface Layer of a Spheroidal Dielectric Particle

  • Conference paper
  • First Online:
Research and Education: Traditions and Innovations (INTER-ACADEMIA 2021)

Abstract

Based on Rayleigh–Gans–Debye model, the spatial distribution of the second-harmonic radiation generated in a thin surface layer of a spheroidal dielectric particle is presented using three-dimensional directivity patterns. The peculiarities of forms of the directivity patterns are described for the key values of the parameters. The symmetries of the directivity patterns are revealed, as in the case of second-harmonic generation in a surface layer of a spherical particle. The relationship between the polarization of the generated radiation and the polarization of the incident wave is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jen, S., Gonella, G., Dai, H.: The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: experimental observations. J. Phys. Chem. A 113(16), 4758–4762 (2009). https://doi.org/10.1021/jp9009959

  2. Jen, S., Dai, H., Gonella, G.: The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: the nonlinear rayleigh–gans–debye model. J. Phys. Chem. C 114(10), 4302–4308 (2010). https://doi.org/10.1021/jp910144c

  3. Viarbitskaya, S., Kapshai, V., van der Meulen, P., Hansson, T.: Size dependence of second-harmonic generation at the surface of microspheres. Phys. Rev. A 81(5), 053850 (2010). https://doi.org/10.1103/PhysRevA.81.053850

  4. Roke, S., Bonn, M., Petukhov, V.: Nonlinear optical scattering: the concept of effective susceptibility. Phys. Rev. B 70(11), 115106 (2004). https://doi.org/10.1103/PhysRevB.70.115106

  5. de Beer, A., Roke, S., Dadap, J.: Theory of second-harmonic and sum-frequency scattering from arbitrarily shaped particles. J. Opt. Soc. Am. B 28(6), 1374–1384 (2011). https://doi.org/10.1364/JOSAB.28.001374

    Article  Google Scholar 

  6. Dadap, J., Shan, J., Heinz, T.: Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J. Opt. Soc. Am. B 21(7), 1328–1347 (2004). https://doi.org/10.1364/JOSAB.21.001328

    Article  Google Scholar 

  7. Dadap, J., Shan, J., Eisenthal, K., Heinz, T.: Second-harmonic rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 83(20), 4045–4048 (1999). https://doi.org/10.1103/PhysRevLett.83.4045

    Article  Google Scholar 

  8. Kapshai, V., Shamyna, A.: Second-harmonic generation from a thin spherical layer and no-generation conditions. Opt. Spectrosc. 123(3), 440–453 (2017). https://doi.org/10.1134/S0030400X17090144

    Article  Google Scholar 

  9. Shamyna, A., Kapshai, V.: Second-harmonic generation from a thin cylindrical layer. I. an analytical solution. Optics Spectrosc. 126(6), 645–652 (2019). https://doi.org/10.1134/S0030400X19060225

  10. Kapshai, V., Shamyna, A.: Second-harmonic generation from a thin cylindrical layer. II. Analysis of solution. Optics Spectros. 126(6), 653–660 (2019). https://doi.org/10.1134/S0030400X19060134

  11. Shamyna, A., Kapshai, V.: Second-harmonic generation from a thin cylindrical layer. III. No-Generation conditions. Optics Spectros. 126(6), 661–670 (2019). https://doi.org/10.1134/S0030400X19060237

    Article  Google Scholar 

  12. Kapshai, V., Shamyna, A.: Sum-frequency generation from a thin spherical layer: I. analytical solution. Optics Spectros. 124(6), 826–833 (2018). https://doi.org/10.1134/S0030400X18060115

    Article  Google Scholar 

  13. Shamyna, A., Kapshai, V.: Sum-frequency generation from a thin spherical layer: II. analysis of solution. Optics Spectros. 125(1), 74–81 (2018). https://doi.org/10.1134/S0030400X1807024X

    Article  Google Scholar 

  14. de Beer, A., Roke, S.: Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects. Phys. Rev. B 75(24), 245438 (2007). doi:https://doi.org/10.1103/PhysRevB.75.245438

  15. Shamyna, A., Kapshai, V.: Sum-frequency generation from a thin cylindrical layer. Opt. Spectrosc. 124(1), 103–120 (2018). https://doi.org/10.1134/S0030400X18010198

    Article  Google Scholar 

Download references

Acknowledgements.

This work was supported by Belarusian Republican Foundation for Fundamental Research (project No. F20M–011).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kapshai, V., Shamyna, A., Talkachov, A. (2022). Analysis of the Spatial Distribution of the Second-Harmonic Radiation Generated in a Thin Surface Layer of a Spheroidal Dielectric Particle. In: Khakhomov, S., Semchenko, I., Demidenko, O., Kovalenko, D. (eds) Research and Education: Traditions and Innovations. INTER-ACADEMIA 2021. Lecture Notes in Networks and Systems, vol 422. Springer, Singapore. https://doi.org/10.1007/978-981-19-0379-3_38

Download citation

Publish with us

Policies and ethics