Skip to main content

Investigation of the Convection Effect on the Inclusion Motion in Thermally Stressed Crystals

  • Conference paper
  • First Online:
Research and Education: Traditions and Innovations (INTER-ACADEMIA 2021)

Abstract

The conditions for occurrence of convective mass transfer in a liquid inclusion located in a thermally stressed crystal have been investigated. An estimated calculation of the Rayleigh number for a convective cell with solid boundaries has been performed. It is shown that the calculated value of the Rayleigh number can exceed the critical value. For such conditions, we have obtained analytical expressions for the perturbed velocity and temperature of a cylindrical convective cell with solid boundaries that exist in the inclusion. The theoretical model of induced transitions of atoms of the crystal matrix into solution and back is proposed, taking into account convective mass transfer. Based on the proposed model, the analytical expressions for the dependence of the inclusions velocity on their size at low and high temperature gradients have been obtained. A good quantitative correspondence between the theoretical model and the experimental data is shown in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pradhan, T.K., Panigrahi, P.K.: Suppressing convection strength using confinement during protein crystallization. J. Appl. Phys. 128(8), 084701-1-10 (2020). https://doi.org/10.1063/5.0009383

  2. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997). https://doi.org/10.1038/39827

    Article  Google Scholar 

  3. Barash, L.Y., Bigioni, T.P., Vinokur, V.M., Shchur, L.N.: Evaporation and fluid dynamics of a sessile drop of capillary size. Phys. Rev. E 79, 046301-1-16 (2009). https://doi.org/10.1103/PhysRevE.79.046301

  4. Mohanakumar, S., Luettmer-Strathmann, J., Wiegand, S.: Thermodiffusion of aqueous solutions of various potassium salts. J. Chem. Phys. 154, 084506-1-10 (2021). https://doi.org/10.1063/5.0038039

  5. Chernov, A.A.: Modern crystallography III. Crystal growth. With contributions by Givargizov, E.I., Bagdasarov, K.S., Kuznetsov, V.A., Demianets, L.N., Lobachev, A.N. Springer, Heidelberg, New York, Tokyo (1984)

    Google Scholar 

  6. Laudise, R.A., Parker, R.L.: The Growth of Single Crystals. Mir, Moscow (1974). (in Russian Pocт мoнoкpиcтaллoв)

    Google Scholar 

  7. Namura, K., Nakajima, K., Suzuki, M.: Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters. Nanotechnology 29(6), 065201-1-7 (2018). https://doi.org/10.1088/1361-6528/aaa260

  8. Lee, S.J., Hong, J., Choi, Y.-S.: Evaporation-induced flows inside a confined droplet of diluted saline solution. Langmuir 30(26), 7710–7715 (2014). https://doi.org/10.1021/la501401y

    Article  Google Scholar 

  9. Kulyk, O.P., Bulavin, L.A., Skoromnaya, S.F., Tkachenko, V.I.: A model of induced motion of inclusions in inhomogeneously stressed crystals. In: Varkonyi-Koczy, A.R. (eds.) Engineering for Sustainable Future. Inter-Academia 2019. Lecture Notes in Networks and Systems (LNNS), vol. 101, pp. 326–339 (2020). https://doi.org/10.1007/978-3-030-36841-8_32

  10. Kulik, A.P., Podshyvalova, O.V., Marchenko, I.G.: Radiation-induced motion of liquid inclusions in alkali halide crystals. Probl. Atomic Sci. Technol. 120(2), 13–19 (2019). https://vant.kipt.kharkov.ua/TABFRAME2.html

    Article  Google Scholar 

  11. Geguzin, Ya.E., Krivoglaz, M.A.: Migration of macroscopic inclusions in solids. Translated from Russian, Studies in Soviet Sciences, Consultants Bureau, New York (1973)

    Google Scholar 

  12. Kruzhanov, V.S., Podshyvalova, O.V.: Defining the kinetic coefficients of dissolution using the experimental data on the motion of liquid inclusions in the crystals. Sov. Crystallography 35(6), 1534–1539 (1990). (in Russian Oпpeдeлeниe кинeтичecкиx кoэффициeнтoв pacтвopeния из oпытoв пo движeнию жидкиx включeний в кpиcтaллax)

    Google Scholar 

  13. Geguzin, Ya.E., Kaganovskii, Yu.S., Kruzhanov, V.S., Kulik, A.P.: Movement of pores in crystals with impurities in the temperature gradient field. Ukr. phys. zhurn. 33(12), 1819–1824 (1988). (in Russian Движeниe пop в кpиcтaллax c пpимecью в пoлe тeмпepaтypнoгo гpaдиeнтa)

    Google Scholar 

  14. Kulyk, O.P., Tkachenko, V.I., Podshyvalova, O.V., Gnatyuk, V.A., Aoki, T.: Nonlinear interaction of macrosteps on vicinal surfaces at crystal growth from vapor. J. Cryst. Growth 530, 125296-1-7 (2020). https://doi.org/10.1016/j.jcrysgro.2019.125296

  15. Kulyk, O.P., Podshyvalova, O.V., Andrieieva, O.L., Tkachenko, V.I., Gnatyuk, V.A., Aoki, T.: Formation of step density shock waves on vicinal NaCl(100) surfaces. Probl. Atomic Sci. Technol. 137(2), 154–160 (2022). https://doi.org/10.46813/2022-137-154

  16. Andrieieva, O.L.,Tkachenko, V.I., Kulyk, O.P., Podshyvalova, O.V., Gnatyuk, V.A., Aoki, T.: Application of particular solutions of the Burgers equation to describe the evolution of shock waves of density of elementary steps. East Eur. J. Phys. 4, 59–67 (2021). https://doi.org/10.26565/2312-4334-2021-4-06

  17. Morkoc, H.: Handbook of Nitride Semiconductors and Devices, 1st edn. Wiley-VCH, New-York (2008)

    Book  Google Scholar 

  18. Goldfarb, I.: Step-mediated size selection and ordering of heteroepitaxial nanocrystal. Nanotechnology 18(33), 335304-1-7 (2007). https://doi.org/10.1088/0957-4484/18/33/335304

  19. Bao, J., Yasui, O., Norimatsu, W., Matsuda, K., Kusunoki, M.: Sequential control of step-bunching during graphene growth on SiC (0001). Appl. Phys. Let. 109(8), 081602-1-5 (2016). https://doi.org/10.1063/1.4961630

  20. Kibets, V.I., Kulik, A.P.: High-temperature deformation of copper during oxidation. Powder Metall. Met. Ceram. 33(5–6), 236–239 (1995)

    Article  Google Scholar 

  21. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1970)

    MATH  Google Scholar 

  22. Gershuni, G.Z., Zhukhovitsky, E.M.: Convective Stability of an Incompressible Fluid. Nauka, Moscow (1972). (in Russian Кoнвeктивнaя ycтoйчивocть нecжимaeмoй жидкocти)

    Google Scholar 

  23. Koschmieder, E.L.: Bénard Cells and Taylor Vortices. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  24. Patochkina, O.L., Kazarinov, Yu.G., Tkachenko, V.I.: Physical model of the dependence of the Nusselt number on the Rayleigh number. Tech. Phys. 61(11), 1626–1632 (2016). https://doi.org/10.1134/S1063784216110177

    Article  Google Scholar 

  25. Andrieieva, O.L., Kostikov, A.O., Tkachenko, V.I.: Analytical solutions and neutral curves of stationary linear Rayleigh problems for cylindrical convective cells with solid and mixed boundary conditions. Probl. Mech. Eng. 20(1), 17–28 (2017). (in Russian Aнaлитичecкиe peшeния и нeйтpaльныe кpивыe cтaциoнapныx линeйныx зaдaч Pэлeя для цилиндpичecкиx кoнвeктивныx ячeeк c твepдыми и cмeшaнными гpaничными ycлoвиями)

    Google Scholar 

  26. Andreeva, O.L., Borts, B.V., Kostikov, A.O., Tkachenko, V.I.: Theoretical studies of elementary convection cell in the horizontal layer of viscous incompressible liquid with rigid and mixed boundary conditions. Electron. Simul. 39(2), 35–46 (2017). (in Russian Teopeтичecкoe иccлeдoвaниe элeмeнтapнoй кoнвeктивнoй ячeйки c твepдыми и cмeшaнными гpaничными ycлoвиями в гopизoнтaльнoм cлoe вязкoй нecжимaeмoй жидкocти)

    Google Scholar 

  27. Andreeva, O.L., Borts, B.V., Kostikov, A.O., Tkachenko, V.I.: Experimental study of formation elementary convection cell in the horizontal layer of viscous incompressible liquid with rigid and mixed boundary conditions. Integrated technologies and energy saving. Model. Ind. Equip. Process. 4, 30–35 (2016). (in Russian Экcпepимeнтaльныe иccлeдoвaния элeмeнтapнoй кoнвeктивнoй ячeйки c твepдыми и cмeшaнными гpaничными ycлoвиями в гopизoнтaльнoм cлoe вязкoй нecжимaeмoй жидкocти). http://repository.kpi.kharkov.ua/handle/KhPI-Press/29416

  28. Koschmieder, E.L., Prahl, S.A.: Surface tension-driven Bénard convection in small containers. J. Fluid Mech. 215, 571–583 (1990). https://doi.org/10.1017/S0022112090002762

    Article  Google Scholar 

  29. Bozbiei, L.S., Borts, B.V., Kazarinov, U.G., Kostikov, A.O., Tkachenko, V.I.: Experimental study of liquid movement in free elementary convective cells. Energetika 61(2), 45–56 (2015). https://doi.org/10.6001/energetika.v61i2.3132

    Article  Google Scholar 

  30. Tiller, W.A.: Migrationof a liquid zone through a solid: part I. J. Appl. Phys. 34(9), 2757–2762 (1963). https://doi.org/10.1063/1.1729806

    Article  Google Scholar 

  31. Anthony, T.R., Cline, H.E.: Thermal migration of liquid droplets through solids. J. Appl. Phys. 42(9), 3380–3387 (1971). https://doi.org/10.1063/1.1660741

    Article  Google Scholar 

  32. Geguzin, Ya.E., Dzyuba, A.S., Kruzhanov, V.S.: Investigation of the behavior of liquid inclusions in a crystal in a field of a temperature gradient. Kristallografiya 20(2), 383–391 (1975). (in Russian Иccлeдoвaниe пoвeдeния жидкиx включeний в кpиcтaллe в пoлe тeмпepaтypнoгo гpaдиeнтa)

    Google Scholar 

  33. Olander, D.R., Machiels, A.J., Balooch, M., Yagnik, S.K.: Thermal gradient migration of brine inclusions in synthetic alkali halide single crystals. J. Appl. Phys. 53(1), 669–681 (1982). https://doi.org/10.1063/1.329975

    Article  Google Scholar 

  34. Kulyk, O.P., Shevchenko, M.Yu., Podshyvalova, O.V., Tkachenko, V.I., Gnatyuk, V.A., Aoki, T.: Thermally-induced motion of inclusions in crystals. In: Proceedings of the International Scientific and Technical Conference “Physical and Technical Problems of Energy and Their Solutions 2020” (ISTCPTPES-2020), Abstract Collection, 19 (2020). (30 June 2020, Kharkiv, Ukraine). (in Russian Tepмичecки-индyциpoвaннoe движeниe включeний в кpиcтaллax)

    Google Scholar 

  35. Chernov, A.A.: On the motion of inclusions in a solid. J. Expem. Theoret. Phys. (U.S.S.R.) 31, 709–710 (1956)

    Google Scholar 

  36. Chen, K.-H., Wilcox, W.R.: Boiling and convection during movement of solvent inclusions in crystals. Ind. Eng. Chem. Fundam. 11(4), 563–565 (1972). https://doi.org/10.1021/i160044a022

    Article  Google Scholar 

  37. Gmelin, L.: Handbuchder Anorganischen Chemie, Kalium. Verlag Chemie g.m.b.h, Leipzig-Berlin (1928)

    Google Scholar 

  38. Toner, J.D., Catling, D.C.: A low-temperature thermodynamic model for the Na-K-Ca-Mg-Cl system incorporating new experimental heat capacitiesin KCl, MgCl2, and CaCl2 solutions. J. Chem. Eng. Data 62(3), 995–1010 (2017). https://doi.org/10.1021/acs.jced.6b00812

    Article  Google Scholar 

  39. Kestin, J., Khalifa, H.E., Correia, R.J.: Tables of the dynamic and kinematic viscosity of aqueous KCl solutions in the temperature range 25–150 °C and the pressure range 0.1–35 MPa. J. Phys. Chem. Ref. Data 10(1), 57–70 (1981). https://doi.org/10.1063/1.555640

  40. Luo, Y., Roux, B.: Simulation of osmotic pressure in concentrated aqueous salt solutions. J. Phys. Chem. Lett. 1(1), 183–189 (2009). https://doi.org/10.1021/jz900079w

    Article  Google Scholar 

  41. Bozbiei, L.S., Borts, B.V., Kostikov, A.O., Tkachenko, V.I.: Formation of elementary convective cell in horizontal layer of viscous incompressible fluid. East Eur. J. Phys. 4(1), 49–56 (2014). http://nbuv.gov.ua/UJRN/eejph_2014_1_4_6

  42. Geguzin, Ya.E., Ovcharenko, N.N.: Surface energy and surface processes in solids. Sov. Phys. Usp. 5(1), 129–157 (1962). (in Russian Пoвepxнocтнaя энepгия и пpoцeccы нa пoвepxнocти твepдыx тeл). https://doi.org/10.1070/PU1962v005n01ABEH003403

  43. Geguzin, Ya.E., Kaganovskij, Yu.S.: Diffusion Processes on a Crystal Surface. Ehnergoatomizdat, Moscow, USSR (1984). (in Russian Диффyзиoнныe пpoцeccы нa пoвepxнocти кpиcтaллa). https://inis.iaea.org/search/search.aspx?orig_q=RN:16077092

Download references

Acknowledgements

This research was partly supported by the 2021 Cooperative Research Projects (grants 2073 and 2074) at the Research Center of Biomedical Engineering (RCBE) adopted as the 2021 Cooperative Research at Research Institute of Electronics, Shizuoka University, Japan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulyk, O.P., Tkachenko, V.I., Andrieieva, O.L., Podshyvalova, O.V., Gnatyuk, V.A., Aoki, T. (2022). Investigation of the Convection Effect on the Inclusion Motion in Thermally Stressed Crystals. In: Khakhomov, S., Semchenko, I., Demidenko, O., Kovalenko, D. (eds) Research and Education: Traditions and Innovations. INTER-ACADEMIA 2021. Lecture Notes in Networks and Systems, vol 422. Springer, Singapore. https://doi.org/10.1007/978-981-19-0379-3_14

Download citation

Publish with us

Policies and ethics