Skip to main content

Diagnosing the Important Morphometric Parameters for Water Resource Management of Geba River Basin, Tigray, Ethiopia

  • Conference paper
  • First Online:
Innovative Trends in Hydrological and Environmental Systems

Abstract

Characterizing of morphometric parameters in the watershed level is important for water resources management. Geba drainage basin is a source of water for many lives. However, its geomorphology is not yet been investigated. This study is an attempt to diagnose the important morphometric parameters that have high nexus with the hydrologic condition of the drainage basin. For this purpose, the Digital Elevation Model (DEM) was used as input data and GIS was used as data processing platform. From the processed DEM data, a total of 16 parameters expected to have high nexus with the basin hydrology including, Bifurcation ratio, Stream frequency, Drainage density, Drainage texture, Infiltration number, Length of overland flow, Elongation ratio, Circulatory ratio, Form factor, Compactness coefficient, Constant of channel maintenance, Basin relief, Relief ratio, Ruggedness number, Channel gradient, and Basin slope were quantified, and their values are 4.3, 1.1 km− 2, 1.3 km− 1, 8 km− 1, 1.4 km− 3, 0.4 km, 0.2, 0.1, 0.2, 0.8, 2.9 km, 2.4 km, 0.01, 3, 0.01, 0.02, respectively. Based on morphometric characterization, values of Stream frequency, Infiltration number, Elongation ratio, Form factor, Constant of channel maintenance, Relief ratio, Channel gradient, and Basin slope are low. Drainage density is coarse, and the remained parameters fall under moderate category. All these results indicate that the Geba river basin is characterized by elongated shape, relatively moderate infiltration capacity, and hence with moderate groundwater potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Altaf, F., Meraj, G., & Romshoo, S. A. (2013). Morphometric analysis to infer hydrological behaviour of Lidder watershed. Western Himalaya.

    Google Scholar 

  2. Aravinda, P. T., & Balakrishna, H. B. (2013). Morphometric analysis of Vrishabhavathi watershed using remote sensing and GIS. Int J Res Eng Technol, 2(8), 514–522.

    Google Scholar 

  3. Bai, R., Li, T., Huang, Y., Li, J., & Wang, G. (2015). An efficient and comprehensive method for drainage network extraction from DEM with billions of pixels using a size-balanced binary search tree. Geomorphology, 238, 56–67. https://doi.org/10.1016/j.geomorph.2015.02.028

    Article  Google Scholar 

  4. Chen, L., Yuan, Y., Yuan, X., Yang, X., Huang, J., Yu, Y. (2018). Threshold selection of river network extraction based on different DEM scales using ATRIC algorithm. In: IOP Conference Series: Materials Science and Engineering (p. 052047).

    Google Scholar 

  5. Clarke, J. (1966). Morphometry from maps. Essays in Geomorphology 235–274.

    Google Scholar 

  6. Dubey, S. K., Sharma, D., & Mundetia, N. (2015). Morphometric analysis of the Banas River Basin using the geographical morphometric analysis of the Banas River Basin using the geographical information system, Rajasthan, India. Hydrology, 3(5), 47–57. https://doi.org/10.11648/j.hyd.20150305.11

  7. Faniran, A. (1968). The index of drainage intensity: a provisional new drainage factor. Australian Journal of Science, 31(9), 326–330.

    Google Scholar 

  8. Farhan, Y. (2017). Morphometric assessment of Wadi Wala Watershed, Southern Jordan Using ASTER (DEM) and GIS. Journal of Geographic Information System, 9(2), 158–190. https://doi.org/10.4236/jgis.2017.92011

    Article  Google Scholar 

  9. Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Woldearegay, K. (2017). Quantitative analysis and implications of drainage morphometry of the Angulo watershed in the semi-arid northern Ethiopia. Applied Water Science, 7(7), 3825–3840. https://doi.org/10.1007/s13201-017-0534-4

    Article  Google Scholar 

  10. Gebre, T., Kibru, T., Tesfaye, S., & Taye, G. (2015). Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed. Journal of Geographic Information System, 7(2), 177–190. https://doi.org/10.4236/jgis.2015.72015

    Article  Google Scholar 

  11. Gebreyohannes, T., De Smedt, F., Walraevens, K., Gebresilassie, S., Hussien, A., Hagos, M., Amare, K., Deckers, J., & Gebrehiwot, K. (2017). Modèle d’écoulement régional d’eaux souterraines du bassin de Geba Nord de l’Ethiopie. Hydrogeology Journal, 25(3), 639–655. https://doi.org/10.1007/s10040-016-1522-8

    Article  Google Scholar 

  12. Gravelius, H. (1941). Flusskunde. Goschen’sche Verlagshandlung.

    Google Scholar 

  13. Hindersah, R., Handyman, Z., Indriani, F. N., Suryatmana, P., & Nurlaeny, N. (2018). Azotobacter population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with Azotobacter. Journal of Degraded and Mining Lands Management, 5(53), 2502–2458. https://doi.org/10.15243/jdmlm

  14. Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.

    Article  Google Scholar 

  15. Horton, R. E. (1932). Drainage-basin characteristics. EOS, Transactions of the American Geophysical Union, 13(1), 350–361.

    Article  Google Scholar 

  16. Huggel, C., Schneider, D., Miranda, P. J., Granados, H. D., & Kääb, A. (2008). Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatépetl Volcano, Mexico. Journal of Volcanology and Geothermal Research, 170(1–2), 99–110. https://doi.org/10.1016/j.jvolgeores.2007.09.005

    Article  CAS  Google Scholar 

  17. Kabite, G., & Gessesse, B. (2018). International soil and water conservation research hydro-geomorphological characterization of Dhidhessa River basin. International Soil and Water Conservation Research, 6(2), 175–183. https://doi.org/10.1016/j.iswcr.2018.02.003

    Article  Google Scholar 

  18. Kumar, P., & Kshitij, R. (2017). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7(1), 217–232. https://doi.org/10.1007/s13201-014-0238

    Article  Google Scholar 

  19. Maathuis, B. H. P., & Wang, L. (2008). Digital elevation model based hydro-processing digital elevation model based hydro-processing. Geocarto International, 21(1), 21–26. https://doi.org/10.1080/10106040608542370

    Article  Google Scholar 

  20. Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: A GIS approach. Environment and Earth Science, 64(2), 373–381. https://doi.org/10.1007/s12665-010-0860-4

    Article  Google Scholar 

  21. Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA-based approach. Applied Water Science, 7(3), 1505–1519. https://doi.org/10.1007/s13201-015-0332-9

    Article  Google Scholar 

  22. Miller, V. C. (1953). A quantitative geomorphologic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Technical report 3, Columbia University, New York

    Google Scholar 

  23. Moges, G., & Bhole, V. (2015). Morphometric Characteristics and the Relation of Stream Orders to Hydraulic Parameters of River Goro: An Ephemeral River in Dire-Dawa, Ethiopia. Univers J Geosci 3(1):13–27. https://doi.org/10.13189/ujg.2015.030102

  24. Nag, S. (1998). Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(l):69–76

    Google Scholar 

  25. Panhalkar, S. S. (2014). RETRACTED: Hydrological modeling using SWAT model and geoinformatics techniques. The Egyptian Journal of Remote Sensing and Space Science, 17(2), 197–207. https://doi.org/10.1016/j.ejrs.2014.03.001

    Article  Google Scholar 

  26. Pareta, K., Pareta, U., & Decisions, S. (2011). Quantitative morphometric analysis of a watershed of Yamuna Basin, India using ASTER ( DEM ) data and GIS. International Journal of Geomatics and Geosciences, 2(1), 248–269.

    Google Scholar 

  27. Patel, D. P., Gajjar, C. A., & Srivastava, P. K. (2013). Prioritization of Malesari mini-watersheds through morphometric analysis: Remote sensing and GIS perspective. Environment and Earth Science, 69(8), 2643–2656. https://doi.org/10.1007/s12665-012-2086-0

    Article  Google Scholar 

  28. Perucca, L. P., & Angilieri, Y. E. (2011). Morphometric characterization of Del Molle Basin applied to the evaluation of flash floods hazard, Iglesia Department, San Juan, Argentina. Quaternary International, 233(1), 81–86. https://doi.org/10.1016/j.quaint.2010.08.007

    Article  Google Scholar 

  29. Schumm, S. A. (1956). Evolution of drainage systems and slopes in bad lands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646.

    Article  Google Scholar 

  30. Singh, P., Gupta, A., & Singh, M. (2014). Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 17(2), 111–121. https://doi.org/10.1016/j.ejrs.2014.09.003

    Article  Google Scholar 

  31. Singh, V., & Singh, U. C. (2011). Basin Morphometry of Maingra River, district Gwalior, Madhya Pradesh. International journal of Geomatics and Geosciences, 1(4), 891–902.

    Google Scholar 

  32. Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248, 655–668.

    Article  Google Scholar 

  33. Strahler, A. N. (1964). Part II. Quantitative geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology. McGraw-Hill, New York, pp. 4–39

    Google Scholar 

  34. Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117–1142.

    Article  Google Scholar 

  35. Thomas, J., Joseph, S., Thrivikramji, K. P., Abe, G., & Kannan, N. (2012). Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India. Environmental Earth Sciences, 66(8), 2353–2366. https://doi.org/10.1007/s12665-011-1457-2

    Article  Google Scholar 

  36. Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., & Bergerud, W. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1(1), 61–66. https://doi.org/10.1007/s10346-003-0002-0

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out by the support of Raya University and Ethiopian Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Godif, G., Manjunatha, B.R., Gangadhara Bhat, H. (2022). Diagnosing the Important Morphometric Parameters for Water Resource Management of Geba River Basin, Tigray, Ethiopia. In: Dikshit, A.K., Narasimhan, B., Kumar, B., Patel, A.K. (eds) Innovative Trends in Hydrological and Environmental Systems. Lecture Notes in Civil Engineering, vol 234. Springer, Singapore. https://doi.org/10.1007/978-981-19-0304-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0304-5_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0303-8

  • Online ISBN: 978-981-19-0304-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics