Skip to main content

A Review on Biosynthesis of Nanoparticles and Their Applications

  • Conference paper
  • First Online:
Intelligent Computing Techniques for Smart Energy Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 862))

  • 490 Accesses

Abstract

Synthesis of nanoparticles (NPs) by conventional techniques produces large amount of harmful and toxic byproducts. Thus, to resolve this problem, greener ways to develop metallic nanoparticles are needed which is eco-friendly, clean, and less toxic as compared to the conventional methods. Gold, silver, alloy, and magnetic nanoparticles are some basic type of NPs which can be produce by these methods. Plant-mediated biosynthesis of NPs is a new emerging green nanoparticle-based technology which have application in various field like water treatment, agriculture, industries, and biomedical field. Therefore, this review article emphasizes on synthesis of nanoparticles from naturally available resources and their application in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  Google Scholar 

  2. Anu K, Singaravelu G, Murugan K, Benelli G (2017) Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on vero cells. J Clust Sci 28(1):551–563. https://doi.org/10.1007/s10876-016-1123-7

    Article  Google Scholar 

  3. Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP (2019) Self-assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater 20:51–95. https://doi.org/10.1080/14686996.2018.1553108

    Article  Google Scholar 

  4. Singh A, Dubey S, Dubey HK (2019) Nanotechnology: the future engineering. Int J Adv Innov Res 6:230–233

    Google Scholar 

  5. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65

    Google Scholar 

  6. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem

    Google Scholar 

  7. FutureMarketInsights Global Market for Metal and Metal Oxide Nanoparticles to Surge at More Than 10% CAGR. Available Online: http://markets.businessinsider.com/news/stocks/Global-Market-forMetal-MetalOxide-Nanoparticles-to-Surge-at-More-Than-10CAGR-1001862836. Accessed on 21 Nov 2018

  8. Ovais M, Khalil A, Ayaz M, Ahmad I, Nethi S, Mukherjee S (2018) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19(12):4100. https://doi.org/10.3390/ijms19124100

    Article  Google Scholar 

  9. Venkataraman D, Kalimuthu K, Sureshbabu RKP, Sangiliyandi G (2011) Metal nanoparticles in microbiology. In: Rai M, Duran N, vol 11, Springer, pp 17–35

    Google Scholar 

  10. Sukumaran P, Eldho KP (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(32):2–10

    Google Scholar 

  11. Ratnika V, Bhadauria S, Gaur MS, Renu P (2011) Copper Nanoparticles Synthesis from electroplating industry effluent. Nano Biomed. Eng. 3(2):115–119

    Google Scholar 

  12. Abhilash, Revati K, Pandey BD (2011) Microbial synthesis of iron-based nanomaterial’s—a review. Bull Mater Sci 34(2):191–198

    Google Scholar 

  13. Xiangqian L, Huizhong X, Chen Z, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16

    Google Scholar 

  14. Oza G, Pandey S, Gupta A, Kesarkar R, Sharon M (2012) Biosynthetic reduction of gold ions to gold nanoparticles by Nocardia farcinica. J Microbiol Biotechnol Res 2(4):511–515

    Google Scholar 

  15. Gopinath V, Priyadarshini S, Loke MF, Arunkumar J, Marsili E, Mubarakali D, Velusamy P, Vadivelu J (2017) Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab J Chem 10:1107–1117. https://doi.org/10.1016/j.arabjc.2015.11.011

    Article  Google Scholar 

  16. Shyam A, Smitha CS, George B, Sreelekha E (2020) Plant mediated synthesis of AgNPs and its applications: an overview. Inorg Nano-Metal Chem. https://doi.org/10.1080/24701556.2020.1852254

    Article  Google Scholar 

  17. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone Mexicana leaf extract and evaluation of their antimicrobial activity. Dig J Nanomater Biostruct 5(2):483–489

    Google Scholar 

  18. Ankamwar B, Damle C, Ahmad A, Satry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol B 5(10):1665–1671

    Article  Google Scholar 

  19. Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34(5):615–619

    Article  Google Scholar 

  20. Jain D, Daima HK, Kachhwala S, Kothari SL (2009) Synthesis of plantmediated silver nanoparticles using Papaya fruit extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 4(3):557–563

    Google Scholar 

  21. Phillip D (2011) Mangifera indica leaf-assisted biosynthesis of welldispersed silver nanoparticles. Spectrochim Acta Part A 78(1):327–331

    Article  Google Scholar 

  22. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic—organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256

    Article  Google Scholar 

  23. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A 348(1):212−216

    Google Scholar 

  24. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33(1):159–164

    Article  Google Scholar 

  25. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3(1):14–19

    Article  Google Scholar 

  26. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea T, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41(14):5137–5142

    Article  Google Scholar 

  27. Krishnamurthy S, Sathishkumar M, Lee SY, Bae MA, Yun YS (2011) Biosynthesis of Au nanoparticles using cumin seed powder extract. J Nanosci Nanotechnol 11(2):1811–1814

    Article  Google Scholar 

  28. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia Jasminoides Ellis: long life time nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601

    Google Scholar 

  29. Alam H, Khatoon N, Raza M, Ghosh PC, Sardar M (2019) Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. Bionanoscience 9(1):96–104. https://doi.org/10.1007/s12668-018-0569-5

    Article  Google Scholar 

  30. Rajkumar R, Ezhumalai G, Gnanadesigan M (2020) A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environ Technol Innov 101282. https://doi.org/10.1016/j.eti.2020.101282

  31. Zhang Q, Li M, Luo B, Luo Y, Jiang H, Chen C, Wang S, Min D (2020) In situ growth gold nanoparticles in three-dimensional sugarcane membrane for flow catalytical and antibacterial application. J Hazard Mater 123445. https://doi.org/10.1016/j.jhazmat.2020.123445

  32. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by escherichia coli DH5 and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170

    Article  Google Scholar 

  33. Ju H, Zhang X, Wang J (2011) Nanobiosensing for clinical diagnosis. NanoBiosensing 535– 67. https://doi.org/10.1007/978-1-4419-9622-0_18

  34. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  Google Scholar 

  35. Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure-activity relationships. Mutat Res 277:201–220. https://doi.org/10.1016/0165-1110(92)90044-a

    Article  Google Scholar 

  36. Zhang Z, Shao C, Sun Y, Mu J, Zhang M, Zhang P, Guo Z, Liang P, Wang C, Liu Y (2012) Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silicananotubes for catalytic reduction of 4-nitrophenol. J Mater Chem 22:1387–1395. https://doi.org/10.1039/C1JM13421C

    Article  Google Scholar 

  37. Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62. https://doi.org/10.1016/j.micron.2013.10.006

    Article  Google Scholar 

  38. Yang M, Pan X, Zhang N, Xu Y (2013) A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds. CrystEngComm 15:6819–6828. https://doi.org/10.1039/c3ce40694f

    Article  Google Scholar 

  39. Kwon T, Woo HJ, Kim YH, Lee HJ, Park KH, Park S, Youn B (2012) Optimizing hemocompatibility of surfactant-coated silver nanoparticles in human erythrocytes. J Nanosci Nanotechnol 12:6168–6175. https://doi.org/10.1166/jnn.2012.6433

    Article  Google Scholar 

  40. Simbine EO, Rodrigues LDC, Lapa-Guimaraes J, Kamimura ES, Corassin CH, Oliveira CAFD (2019) Application of silver nanoparticles in food packages: a review. Food Sci Technol 39:793–802. https://doi.org/10.1590/fst.36318

  41. Bindhu MR, Umadevi M (2014) Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim Acta Part A Mol Biomol Spectrosc 128:37–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitu Bhatnagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rukshar, Bhatnagar, N. (2022). A Review on Biosynthesis of Nanoparticles and Their Applications. In: Tripathi, A., Soni, A., Shrivastava, A., Swarnkar, A., Sahariya, J. (eds) Intelligent Computing Techniques for Smart Energy Systems. Lecture Notes in Electrical Engineering, vol 862. Springer, Singapore. https://doi.org/10.1007/978-981-19-0252-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0252-9_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0251-2

  • Online ISBN: 978-981-19-0252-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics