Skip to main content

Estimating Productivity and Carbon Stock Using Phonological Indices from Satellite Remote Sensing in Indonesia

  • Chapter
  • First Online:
Remote Sensing Application

Abstract

Indonesia has the highest forest density in the world, and the productivity of its forests can potentially be maximized to minimize CO2 emissions. However, due to anthropogenic activities, phenological properties are subject to risk to ensure productivity and carbon exchange in the different forest ecosystems in Indonesia. Early prediction of carbon values could indicate a declining trend of forest quality with reference to vegetation levels. Thus, the purpose of this research is to evaluate forest productivity and carbon stock using phonological properties for different forests. The vegetation phenology was used to assess the level of forest productivity with different classifications to estimate carbon stock in six types of forest in south Sumatra using gross primary productivity (GPP) approaches. The vegetation phonologies were analyzed to develop a system dynamics model under two scenarios: first, a changing trend of normalized difference vegetation index (NDVI), and second, a changing trend of area, considering either increasing or decreasing solar radiation in both scenarios. This system was run through the geographic information system (GIS) environment to develop a database and to simulate results for future predictions. Verification was performed to test the simulation model by comparing the results with the Intergovernmental Panel on Climate Change (IPCC) reference. NDVI showed good correlations with GPP using MODIS MOD13Q1 for convertible production forest (CPF R2 = 0.97), permanent production forest, PPF (R2 = 0.99), limited production forest (LPF, R2 = 0.98), tourism recreation forest (TRF, R2 = 0.95), and wildlife reserve forest (WRF, R2 = 0.95), nature reserve forest (NRF, R2 = 0.99). The explicit differential function was used to estimate net primary productivity (NPP), which was related to the changes in area and productivity over time. Productivity and carbon stock analysis was performed via the proposal of five levels referring to Indonesian forest policy planning, considering resilience classified as high forest productivity (V1), moderate forest productivity (V2), marginal forest productivity (V3), very low forest productivity (N1), and no forest productive (N2). TRF was found to fall below the IPCC levels from 2015 to 2017, and NRF fall below the IPCC standards from 2015 to 2018. Therefore, the satellite-based remote sensing, system dynamics model can be implemented in the Indonesian forest policy system for assessing forest productivity and carbon stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abetu D, Bekele T (2019) Carbon stock in the Dirki woodland vegetation of Central Ethiopia: a case study in Ilu Gelan District, West Shewa Zone, Oromia Regional state. Trop Plant Res 6:438–451. https://doi.org/10.22271/tpr.2019.v6.i3.054

    Article  Google Scholar 

  • Ahamed T, Tian L, Zhang Y, Ting KC (2011) A review of remote sensing methods for biomass feedstock production. Biomassss Bioenergy 35(7):2455–2469. https://doi.org/10.1016/j.biombioe.2011.02.028

    Article  Google Scholar 

  • As-syakur AR, Osawa T, Adnyana IS (2011) Estimation of gross primary production using satellite data and Gis in urban area, Denpasar. Int J Remote Sens Earth Sci 7:84–95. https://doi.org/10.30536/j.ijreses.2010.v7.a1544

    Article  Google Scholar 

  • Bastin J, Berrahmouni N, Grainger A, Maniatis D, Mollicone D, Moore R, Patriarca C, Picard N, Sparrow B, Abraham EM, Aloui K, Atesoglu A, Attore F, Bassüllü Ç, Bey A, Garzuglia M, GarcíaMontero LG, Groot N, Guerin G, Laestadius L, Lowe AJ, Mamane B, Marchi G, Patterson P, Rezende M, Ricci S, Salcedo I, Sanchez-Paus Diaz A, Stolle F, Surappaeva V, Castro R (2017) The extent of forest in dryland biomass. Science 356(6338):635–638

    Article  Google Scholar 

  • Box EO, Holben BN, Kalb V (1989) Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80:71–89. https://doi.org/10.1007/BF00048034

    Article  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO forestry paper (ISBN: 92-5-103955-0)

    Google Scholar 

  • Burke IC, Schimel DS, Yonker CM, Parton WJ, Joyce LA, Lauenroth WK (1990) Regional modeling of grassland biogeochemistry using GIS. Landsc Ecol 4:45–54. https://doi.org/10.1007/BF02573950

    Article  Google Scholar 

  • Burke IC, Kittel TGF, Lauenroth WK, Snook P, Yonker CM, Parton WJ (1991) Regional analysis of the Central Great Plains. Bioscience 41:685–692

    Article  Google Scholar 

  • Cai Z, Jönsson P, Jin H, Eklundh L (2017) Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS Data. Remote Sens 9:1271. https://doi.org/10.3390/rs9121271

    Article  Google Scholar 

  • Cheng S, Zhao Y (1990) Remote sensing and geosciences analysis. Measurement Press, Beijing, p 220

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochem. Cy in: climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384. https://doi.org/10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2

    Article  Google Scholar 

  • Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46

    Article  Google Scholar 

  • Croft H, Che JM, Froelich NJ, Chen B, Staebler RM (2015) Seasonal controls of canopy chlorophyll content on forest carbon uptake: implications for GPP modeling. J Geophys Res 120(8):1576–1586. https://doi.org/10.1002/2015JG002980

    Article  Google Scholar 

  • Dadhwal VK, Kushwaha SPS, Singh S, Patel NR, Nayak RK, Patil P, Dutt CBS, Murthy MSR, Jha CS, Rajsekhar G, Pujar GS, Trivedi S, Sharma N, Ali MM (2012) Recent results from EO studies on Indian carbon cycle assessment. Arch Photogram Remote Sens Spat Inf Sci ISPRS Int. https://doi.org/10.5194/isprsarchives-xxxviii-8-w20-3-201

  • DeFries RS, Field CB, Fung I, Justice CO, Los S, Matson PA, Matthews E, Mooney HA, Potter CS, Prentice K, Sellers PJ, Townshend JRG, Tucker CJ, Ustin SL, Vitousek PM (1995) Mapping the land surface for global atmosphere-biosphere models: toward continuous distributions of vegetation’s functional properties. J Geophys Res 100:20867–20882. https://doi.org/10.1029/95JD01536

    Article  Google Scholar 

  • DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Natl Acad Sci U S A 99(22):14256–14261

    Article  Google Scholar 

  • Dewar RC, Medlyn BE, McMurtrie RE (1998) A mechanistic analysis of light and carbon use efficiencies. Plant Cell Environ 21:573–588

    Article  Google Scholar 

  • Faber-langendoen D, Keeler-Wolf T, Meidinger D, Josse C, Weakley A, Tart D, Navarro G, Hoagland B, Ponomarenko S, Fults G, Helmer E (2016) Classification and description of world formation types. United States Department of Agriculture, Fort Collins, p 222

    Book  Google Scholar 

  • FAO (2018) The state of the world’s forests

    Google Scholar 

  • Fleming RL, Leblanc JD, Hazlett PW, Weldon T, Irwin R, Mossa DS (2014) Effects of biomass harvest intensity and soil disturbance on jack pine stand productivity: 15-year results. Can J For Res 44:1566–1574. https://doi.org/10.1139/cjfr-2014-0008

    Article  Google Scholar 

  • Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landset TM data and their transferability between regions. Remote Sens Environ 85:463–474

    Article  Google Scholar 

  • Fung IY, Tucker CJ, Prentice KC (1987) On the variability of atmosphere-biosphere exchange of CO2. Adv Space Res 7(11):175–180. https://doi.org/10.1016/0273-1177(87)90309-7

    Article  Google Scholar 

  • Garbulsky MF, Peñuelas J, Papale D, Ardö J, Goulden ML, Kiely G, Richardson AD, Rotenberg E, Veenendaal EM, Filella I (2010) Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Glob Ecol Biogeogr 19:253–267. https://doi.org/10.1111/j.1466-8238.2009.00504.x

    Article  Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:1–13. https://stacks.iop.org/1748-9326/2/045022

    Google Scholar 

  • Gifford RM (1995) Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: long-term vs. short-term distinctions for modeling. Glob Change Biol 1:385–396

    Article  Google Scholar 

  • Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett 32:L08403

    Article  Google Scholar 

  • Gitelson AA, Keydan GP, Merzlyak MN (2006) Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys Res Lett 33:L11402. https://doi.org/10.1029/2006GL026457

    Article  Google Scholar 

  • Goward SN, Tucker CJ, Dye DG (1985) North American vegetation patterns observed with the NOAA-7 advanced very high-resolution radiometer. Vegetatio 64:3–14. https://doi.org/10.1007/BF00033449

    Article  Google Scholar 

  • Gunin PD, Vostokova EA, Dorofeyuk NI, Tarasov PE, Black CC (1999) Vegetation dynamics of Mongolia. Springer, New York, p 240

    Book  Google Scholar 

  • Hilker T, Coops NC, Black TA, Wulder MA, Guy RD (2008) The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. Sci Total Environ 404:411–423. https://doi.org/10.1016/j.scitotenv.2007.11.007

    Article  Google Scholar 

  • Hobbs TJ (1995) The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. Int J Remote Sens 16(7):1289–1302

    Article  Google Scholar 

  • Hooda RS, Dye DG (1996) Estimating carbon-fixation in India based on remote sensing data. In: Proceedings of ACRS, Colombo, Sri Lanka

    Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11:945–958. https://doi.org/10.3390/rs11151823

    Article  Google Scholar 

  • Huang X, Xiao J, Ma M (2019) Evaluating the performance of satellite-derived vegetation indices for estimating gross primary productivity using FLUXNET observations across the globe. Remote Sens 11:1823. https://doi.org/10.3390/rs11151823

    Article  Google Scholar 

  • Huntingford C, Atkin OK, Martinez-de la Torre A, Mercado LM, Heskel MA, Harper AB, Bloomfield KJ, O’Sullivan OS, Reich PB, Wythers KR, Butler EE, Chen M, Griffin KL, Meir P, Tjoelker MG, Turnbull MH, Sitch S, Wiltshire A, Malhi Y (2017) Implications of improved representations of plant respiration in a changing climate. Nat Commun 8:1602

    Article  Google Scholar 

  • Inoue Y, Peñuelas J, Miyata A, Mano M (2008) Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice. Remote Sens Environ 112:156–172. https://doi.org/10.1016/j.rse.2007.04.011

    Article  Google Scholar 

  • IPCC (1997) Climate change 1995: the science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the IPCC

    Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/

  • IPCC (2007) Summary for policymakers. Climate change: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • IPCC (2018) The carbon cycle and atmospheric carbon dioxide. https://www.ipcc.ch/site/assets/uploads/2018/02/TAR-03.pdf

    Google Scholar 

  • Irisarri JGN, Oesterheld M, Paruelo JM, Texeira MA (2012) Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach. J Veg Sci 23:114–126. https://doi.org/10.1111/j.1654-1103.2011.01326.x

    Article  Google Scholar 

  • Jiang H, Apps MJ, Zhang Y, Peng C, Woodward PM (1999) Modelling the spatial pattern of net primary productivity in Chinese forests. Ecol Model 122:275–288

    Article  Google Scholar 

  • Jobbágy EG, Sala OE, Paruelo JM (2002) Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83(2):307–319

    Google Scholar 

  • Joiner J, Yoshida Y, Zhang Y, Duveiller G, Jung M, Lyapustin A, Yujie W, Tucker CJ (2018) Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens 10(9):1346. https://doi.org/10.3390/rs10091346

    Article  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance, and partitioning. For Ecol Manag 95:209–228

    Article  Google Scholar 

  • Lin G, Marino BDV, Wei Y, Adams J, Tubiello E, Berry JA (1998) An experimental and modeling study of responses in ecosystems carbon exchanges to increasing CO2 concentrations using a tropical rainforest mesocosm. Aust J Plant Physiol 25:547–556

    Google Scholar 

  • Luyssaert et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x

    Article  Google Scholar 

  • Mariappan N (2010) Net primary productivity estimation of eastern Ghats using multispectral MODIS data. Int Geomatics Geosci 1:406–413

    Google Scholar 

  • Mbaabu P (2012) AGB/prediction of lidar-derived data using optical imagery for improved pine plantation structure quantification 98

    Google Scholar 

  • McCallum I, Wagner W, Schmullius C, Shvidenko A, Obersteiner M, Fritz S, Nilsson S (2009) Satellite-based terrestrial production efficiency modeling. Carbon Balance Manag 4:8. https://doi.org/10.1186/1750-0680-4-8. http://www.cbmjournal.com/content/4/1/8

    Article  Google Scholar 

  • McCallum I, Wagner W, Schmullius C, Shvidenko A, Obersteiner M, Fritz S, Nilsson S (2010) Comparison of four global FAPAR datasets over northern Eurasia for the year 2000. Remote Sens Environ 114:941–949. https://doi.org/10.1016/j.rse.2009.12.009

    Article  Google Scholar 

  • Ministry of Forestry (2015) Forest production map for use of forest utilization, directorate general of forestry business forestry ministry of forestry, 2015; Forest area and conservation area of South Sumatra Province, forestry data South Sumatra, 2015 (Peta Indikatif Arahan Pemanfaatan Hutan Pada Kawasan Hutan Produksi Yang Tidak Dibebani Izin Untuk Usaha Pemanfaatan Hasil Hutan Kayu. 2014. Lembar Peta, Sumatera Selatan, Indonesia). https://appgis.dephut.go.id/appgis/Araha n_Pemanfaatan_2015/Sumsel.pdf. Accessed 12 Jan 2019

  • Mollicone D, Freibauer A, Schulze ED, Braatz S, Grassi G, Federici S (2007) Elements for the expected mechanisms on ‘reduced emissions from deforestation and degradation, REDD’ under the UNFCCC. Environ Res Lett 2:045024. https://stacks.iop.org/1748-9326/2/045024

    Article  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747. https://doi.org/10.2307/2401901

    Article  Google Scholar 

  • Myneni RB, Williams DL (1994) On the relationship between FAPAR and NDVI. Remote Sens Environ 49:200–211. https://doi.org/10.1016/0034-4257(94)90016-7

    Article  Google Scholar 

  • Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The meaning of spectral vegetation indices. IEEE Trans Geosci Remote Sens 33:481–486

    Article  Google Scholar 

  • Návar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag 257:427–434. https://doi.org/10.1016/j.foreco.2008.09.028

    Article  Google Scholar 

  • Obi Reddy GP, Singh SK (2018) Geospatial technologies in land resources mapping, monitoring and management. Springer, Berlin, p 395

    Book  Google Scholar 

  • Ochi S, Shibasaki R (1999a) Algorithm for generating drainage direction matrix using DEM (GTOPO30) and DCW. J Jpn Soc Photogram Remote Sens 38(3):60–68

    Google Scholar 

  • Ochi S, Shibasaki R (1999b) Estimation of NPP based agricultural production for Asian countries using remote sensing data and GIS. In: Proceeding of the 20th Asian conference on remote sensing

    Google Scholar 

  • Ochi S, Shibasaki R, Murai S (2000) Assessment of primary productivity for food production in major basins of Asia using R. S., and GIS. Int Arch Photogramm Remote Sens XXXIII:1051–1057

    Google Scholar 

  • Paruelo JM et al (1997) ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78(3):953958. https://doi.org/10.1890/00129658(1997)078[0953:AEFNFT]2.0.CO;2

    Article  Google Scholar 

  • Pedgen C, Sadowski R, Shannon R (1995) Introduction to simulation using SIMAN, 2nd edn. McGraw-Hill, Singapore

    Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA et al (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–841

    Article  Google Scholar 

  • Prince SD (1991) A model of regional primary production for use with coarse resolution satellite data. Int J Remote Sens 12:1313–1330

    Article  Google Scholar 

  • Rasib AW, Ibrahim AL, Cracknell AP, Fandi MA, Kadir WHW (2007) Mapping net primary production in tropical rain forest using MODIS satellite data. In: 28th Asian conference on remote sensing 2007, ACRS 2007, vol 1, pp 322–327

    Google Scholar 

  • Richardson GP (1997) Problems in causal loop diagrams revisited. Syst Dyn Rev 13:247–252. https://doi.org/10.1002/(SICI)1099-1727(199723)13:3<247:AID-SDR128>3.0.CO;2-9

    Article  Google Scholar 

  • Rodrigues DP, Hamacher C, Estrada GCD, Soares MLG (2015) Variability of carbon content in mangrove species: effect of species, compartments and tidal frequency. Aquat Bot 120:346–351. https://doi.org/10.1016/j.aquabot.2014.10.004

    Article  Google Scholar 

  • Romijn E, Lantican CB, Herold M, Lindquist E, Ochieng R, Wijaya A, Murdiyarso D, Verchot L (2015) Assessing change in national forest monitoring capacities of 99 tropical countries. For Ecol Manag 352:109–123. https://doi.org/10.1016/j.foreco.2015.06.003

    Article  Google Scholar 

  • Rouse JW, Hass RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the great plains with ERTS. In: Third Earth Resour Technol Satell Symp, vol 1, pp 309–317. https://www.citeulike-article-id:12009708

  • Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res 99:5263–5283

    Article  Google Scholar 

  • Ruimy A, Dedieu G, Saugier B (1996) TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem Cycles 10(2):269–285. https://doi.org/10.1029/96GB00349

    Article  Google Scholar 

  • Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer JR, Field CB (eds) Scaling physiological processes: leaf to globe. Academic, San Diego, pp 141–158

    Chapter  Google Scholar 

  • Running SW, Justice CO, Salomonson V, Hall D, Barker J, Kaufman YJ et al (1994) Terrestrial remote sensing science and algorithms planned for EOS/MODIS. Int J Remote Sens 15:3587–3620

    Article  Google Scholar 

  • Running SW, Thornton PE, Nemani RR, Glassy JM (2000) Global terrestrial gross and net primary productivity from the Earth Observing System. In: Sala O, Jackson R, Mooney H (eds) Methods in ecosystem science. Springer, New York, pp 44–57

    Chapter  Google Scholar 

  • Running SW, Ramakrisha R, Nemani FAH, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560

    Article  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1(2):157–167

    Article  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci U S A 108:9899–9904. https://doi.org/10.1073/pnas.1019576108

    Article  Google Scholar 

  • Schloss AL et al (1999) Comparing global models of terrestrial net primary productivity (NPP): comparison of NPP to climate and the Normalized Difference Vegetation Index (NDVI). Glob Change Biol 5(1):25–34. https://doi.org/10.1046/j.1365-2486.1999.00004.x

    Article  Google Scholar 

  • Schriber TJ (1987) The nature and role of simulation in the design of manufacturing systems. In: Retti J, Wichmann KE (eds) Simulation in CIM and artificial intelligence techniques. Society of Computer Simulation, pp 5–18

    Google Scholar 

  • Schwarz PA, Law BE, Williams M, Irvine J, Kurpius M, Moore D (2004) Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems. Global Biogeochem Cycles 18(4):GB4007. https://doi.org/10.1029/2004GB002234

    Article  Google Scholar 

  • Setyono P, Himawan W, Sari CP, Gunawan T, Murti SH (2020) Greenhouse gas pollution based on energy use and its mitigation potential in the city of Surakarta, Indonesia

    Google Scholar 

  • Sjöström M, Ardö J, Arneth A, Boulain N, Cappelaere B, Eklundh L, de Grandcourt A, Kutsch WL, Merbold L, Nouvellon Y, Scholes RJ, Schubert P (2011) Exploring the potential of MODIS EVI for modelling gross primary production across African ecosystem. Remote Sens Environ 115(4):1081–1089

    Article  Google Scholar 

  • Smith P, Davies CA, Ogle S, Zanchi G, Bellarby J, Bird N, Boddey RM, McNamara NP, Powlson D, Cowie A, van Noordwijk M, Davis SC, Richter DDB, Kryzanowski L, van Wijk MT, Stuart J, Kirton A, Eggar D, Newton-Cross G, Adhya TK, Braimoh AK (2012) Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob Chang Biol 18:2089–2101. https://doi.org/10.1111/j.1365-2486.2012.02689.x

    Article  Google Scholar 

  • Sonawane K, Bhagat V (2016) Improved change detection of forests using landsat TM and ETM data. Remote Sens Land 1:18–40. https://doi.org/10.21523/gcj1.17010102

    Article  Google Scholar 

  • Sung S, Nicklas F, Georg K, Lee DK (2016) Estimating net primary productivity under climate change by application of global forest model (G4M). J Korean Soc People Plants Environ 19:549–558. https://doi.org/10.11628/ksppe.2016.19.6.549

    Article  Google Scholar 

  • Supeni A (2006) Estimation of net primary production using the netpro 1.0 model (case study: Cidanau watershed) Ania Supeni Faculty of Math and Natural Sciences

    Google Scholar 

  • Thiffault E, Hannam KD, Paré D, Titus BD, Hazlett PW, Maynard DG, Brais S (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ Rev 19:278–309. https://doi.org/10.1139/a11-009

    Article  Google Scholar 

  • Thomlinson JR, Bolstad PV, Cohen WB (1999) Coordinating methodologies for scaling land cover classifications from site-specific to global: steps toward validating global map products. Remote Sens Environ 70:16–28

    Article  Google Scholar 

  • Tian H, Chen G, Liu M, Zhang C, Sun G, Lu C, Xu X, Ren W, Pan S, Chapelka A (2010) Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2005. For Ecol Manag 259(7):1311–1327

    Article  Google Scholar 

  • Tscharntke T, Leuschner C, Zeller M, Guhardja E, Bidin A (2007) Stability of tropical rainforest margins: linking ecological, economic, and social constraints of land use and conservation (environmental science and engineering) (English edition) 2007th edition, kindle edition. ISBN 978-3-540-30290-2

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. Int J Remote Sens 7:1395–1416. https://doi.org/10.1080/01431168608948944

    Article  Google Scholar 

  • Tucker CJ, Holben BN, Elgin JH, McMurtrey JE (1981) Remote sensing of total dry-matter accumulation in winter wheat. Remote Sens Environ 11:171–189

    Article  Google Scholar 

  • Turner DP, Ritts WD, Zhao M, Kurc SA, Dunn AL, Wofsy SC, Small EE, Running SW (2006) Assessing interannual variation in MODIS-based estimates of gross primary production. IEEE Trans Geosci Remote Sens 44:1899–1907. https://doi.org/10.1109/TGRS.2006.876027

    Article  Google Scholar 

  • Ulsig L, Nichol CJ, Karl FH, David RL, Elizabeth MM, Alexei IL, Lyapustin IM, Janne L, Albert PC (2017) Detecting inter-annual variations in the phenology of evergreen conifers using long-term MODIS vegetation index time series. Remote Sens 9:49. https://doi.org/10.3390/rs9010049

    Article  Google Scholar 

  • Wang Q, Ni J, Tenhunen J (2005) Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Glob Ecol Biogeogr 14:379–393. https://doi.org/10.1111/j.1466-822X.2005.00153.x

    Article  Google Scholar 

  • Watson C (2009) Forest carbon accounting: overview and principles. UNDP: CDM Capacity Development in Eastern and Southern Africa

    Google Scholar 

  • Wei S, Yi C, Fang W, Hendrey G (2017) A global study of GPP focusing on light-use efficiency in a random forest regression model. Ecosphere 8(5):e01724. https://doi.org/10.1002/ecs2.1724

    Article  Google Scholar 

  • Wessels KJ, Prince SD, Reshef I (2008) Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J Arid Environ 72(10):1940–1949

    Article  Google Scholar 

  • Wu C, Niu Z, Gao S (2009) Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize. J Geophys Res 115:D12127. https://doi.org/10.1029/2009JD013023

    Article  Google Scholar 

  • Xiao XM, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang QY, Moore B III (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ 89:519–534. https://doi.org/10.1016/j.rse.2003.11.008

    Article  Google Scholar 

  • Xiao X, Zhang Q, Hollinger D, Aber J, Moore B (2005) Modeling gross primary production of an evergreen needleleaf forest using modis and climate data. Ecol Appl 15(3):954–969. https://doi.org/10.1890/04-0470

    Article  Google Scholar 

  • Yu B, Chen F (2016) The global impact factors of net primary production in different land cover types from 2005 to 2011. Springerplus 5(1):1235. https://doi.org/10.1186/s40064-016-2910-1

    Article  Google Scholar 

  • Zhang YQ, Yu Q, Jiang J, Tang YH (2008) Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Glob Chang Biol 14(4):757–767. https://doi.org/10.1111/j.1365-2486.2008.01538.x

    Article  Google Scholar 

  • Zhang Y, Ming X, Hua C, Jonathan A (2009a) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location, and climate. Glob Ecol Biogeogr 18(3):280–290. https://doi.org/10.1111/j.1466-8238.2008.00442.x

    Article  Google Scholar 

  • Zhang Q, Middleton EM, Margolis HA, Drolet GG, Barr AA, Black TA (2009b) Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPARchl) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest? Remote Sens Environ 113:880–888

    Article  Google Scholar 

  • Zhang Y, Xiao X, Wu X, Zhou S, Zhang G, Qin Y, Dong J (2017) A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci Data 4:170165

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global. Science 329:940–943. https://doi.org/10.1126/science.1192666

    Article  Google Scholar 

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176. https://doi.org/10.1016/j.rse.2004.12.011

    Article  Google Scholar 

  • Zhao M, Running SW, Nemani RR (2006) Sensitivity of moderate resolution imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J Geophys Res 111:G01002. https://doi.org/10.1029/2004JG000004

    Article  Google Scholar 

  • Zheng D, Prince S, Wright R (2003) Terrestrial net primary production estimates for 0.5° grid cells from field observationsa contribution to global biogeochemical modelling. Glob Change Biol 9:46–64

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Japan Section of the Regional Science Association International to grant the copyright to include this published article, Nety Nurda, Ryozo Noguchi, Tofael Ahamed. Forest Productivity Analysis from NDVI Using Satellite Remote Sensing in South Sumatra of Indonesia, Asia Pacific Journal of Regional Sciences, 4(3), 657–690, https://doi.org/10.1007/s41685-020-00163-7 2020. Some minor modification has been conducted in this book chapter. Furthermore, we would like to thank the University of Tsukuba to support this research to forest productivity and carbon stock analysis from vegetation phenological indices using satellite remote sensing in Indonesia. We also express our sincere thanks to the Indonesian Geospatial Agency, the United States Geological Survey (USGS), and European Space Agency (ESA) for geographical and satellite data information. We also extend our special thanks to the Ministry of Environment and Forestry of Indonesia, South Sumatra Forestry Extension and National Resilience Institute of the Republic of Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tofael Ahamed .

Editor information

Editors and Affiliations

Appendix (Table 9.3)

Appendix (Table 9.3)

Table 9.3 Productivity (NPP) estimation for the six classified forests

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nurda, N., Noguchi, R., Ahamed, T. (2022). Estimating Productivity and Carbon Stock Using Phonological Indices from Satellite Remote Sensing in Indonesia. In: Ahamed, T. (eds) Remote Sensing Application. New Frontiers in Regional Science: Asian Perspectives, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-19-0213-0_9

Download citation

Publish with us

Policies and ethics