Skip to main content

Engineering the Electronic Structure of Single Atom Ru Sites via Compressive Strain Boosts Acidic Water Oxidation Electrocatalysis

  • Chapter
  • First Online:
Controllable Synthesis and Atomic Scale Regulation of Noble Metal Catalysts

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Single-atom precious metal catalysts hold the promise of perfect atom utilization, yet control of their activity and stability remains challenging. Here we show that engineering the electronic structure of atomically dispersed Ru1 on metal supports via compressive strain boosts the kinetically sluggish electrocatalytic oxygen evolution reaction (OER), and mitigates the degradation of Ru-based electrocatalysts in an acidic electrolyte. We construct a series of alloy-supported Ru1 using different PtCu alloys through sequential acid etching and electrochemical leaching, and find a volcano relation between OER activity and the lattice constant of the PtCu alloys. Our best catalyst, Ru1–Pt3Cu, delivers 90 mV lower overpotential to reach a current density of 10 mA cm−2, and an order of magnitude longer lifetime over that of commercial RuO2. Density functional theory investigations reveal that the compressive strain of the Ptskin shell engineers the electronic structure of the Ru1, allowing optimized binding of oxygen species and better resistance to over-oxidation and dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  2. Cebolla VL, Memrado L, Vela J, Ferrrando AC, Romero C (1996) American chemical society, division of fuel chemistry, preprints

    Google Scholar 

  3. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  CAS  PubMed  Google Scholar 

  4. Vojvodic A, Nørskov JK (2011) Optimizing perovskites for the water-splitting reaction. Science 334:1355–1356

    Article  CAS  PubMed  Google Scholar 

  5. Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345

    Article  CAS  PubMed  Google Scholar 

  6. Spoeri C, Kwan JTH, Bonakdarpour A, Wilkinson DP, Strasser P (2017) The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew Chem Int Ed 56:5994–6021

    Article  CAS  Google Scholar 

  7. McCrory CC, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357

    Article  CAS  PubMed  Google Scholar 

  8. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934

    Article  CAS  Google Scholar 

  9. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404

    Article  CAS  PubMed  Google Scholar 

  10. Stoerzinger KA, Qiao L, Biegalski MD, Shao-Horn Y (2014) Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J Phys Chem Lett 5:1636–1641

    Article  CAS  PubMed  Google Scholar 

  11. Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJ (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6:2219–2223

    Article  CAS  Google Scholar 

  12. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:146–157

    Article  Google Scholar 

  13. Stoerzinger KA, Rao RR, Wang XR, Hong WT, Rouleau CM, Shao-Horn Y (2017) The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2:668–675

    Article  CAS  Google Scholar 

  14. Chang SH, Connell JG, Danilovic N, Subbaraman R, Chang KC, Stamenkovic VR, Markovic NM (2015) Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss 176:125–133

    Article  Google Scholar 

  15. Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang YJ, Snyder J, Paulikas AP, Strmcnik D, Kim Y-T, Myers D, Stamenkovic VR, Markovic NM (2014) Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J Phys Chem Lett 5:2474–2478

    Article  CAS  PubMed  Google Scholar 

  16. Roy C, Rao RR, Stoerzinger KA, Hwang J, Rossmeisl J, Chorkendorff I, Shao-Horn Y, Stephens IE (2018) Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces. ACS Energy Lett 3:2045–2051

    Article  CAS  Google Scholar 

  17. Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821

    Article  CAS  Google Scholar 

  18. Wohlfahrt-Mehrens M, Heitbaum J (1987) Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J Electroanal Chem 237:251–260

    Article  CAS  Google Scholar 

  19. Binninger T, Mohamed R, Waltar K, Fabbri E, Levecque P, Kötz R, Schmidt TJ (2015) Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci Rep 5:12167–12172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee YL, Giordano L, Stoerzinger KA, Koper MT, Shao-Horn Y (2017) Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem 9:457–465

    Article  CAS  PubMed  Google Scholar 

  21. Iwakura C, Hirao K, Tamura H (1977) Anodic evolution of oxygen on ruthenium in acidic solutions. Electrochim Acta 22:329–334

    Article  CAS  Google Scholar 

  22. Hodnik N, Jovanovič P, Pavlišič A, Jozinović B, Zorko M, Bele M, Šelih VS, Šala M, Hočevar S, Gaberšček M (2015) New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media. J Phys Chem C 119:10140–10147

    Google Scholar 

  23. Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horch S, Stephens IE, Chorkendorff I (2015) Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem Sci 6:190–196

    Article  CAS  PubMed  Google Scholar 

  24. Rong X, Parolin J, Kolpak AM (2016) A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal 6:1153–1158

    Article  CAS  Google Scholar 

  25. Strasser P (2016) Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)–oxygen evolution (OER) cycle using core–shell nanoelectrocatalysts. Acc Chem Res 49:2658–2668

    Article  CAS  PubMed  Google Scholar 

  26. Kötz R, Stucki S, Scherson D, Kolb DM (1984) In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J Electroanal Chem 172:211–219

    Article  Google Scholar 

  27. AlYami NM, LaGrow AP, Joya KS, Hwang J, Katsiev K, Anjum DH, Losovyj Y, Sinatra L, Kim JY, Bakr OM (2016) Tailoring ruthenium exposure to enhance the performance of fcc platinum@ruthenium core–shell electrocatalysts in the oxygen evolution reaction. Phys Chem Chem Phys 18:16169–16178

    Article  CAS  PubMed  Google Scholar 

  28. Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12:765–771

    Article  CAS  PubMed  Google Scholar 

  29. Gan L, Cui C, Heggen M, Dionigi F, Rudi S, Strasser P (2014) Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 346:1502–1506

    Article  CAS  PubMed  Google Scholar 

  30. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460

    Article  CAS  PubMed  Google Scholar 

  31. Huang X, Chen Y, Chiu CY, Zhang H, Xu Y, Duan X, Huang Y (2013) A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale 5:6284–6290

    Article  CAS  PubMed  Google Scholar 

  32. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–422

    Article  CAS  Google Scholar 

  33. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335:1209–1212

    Article  CAS  PubMed  Google Scholar 

  34. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Yin HM, Li XB, Okunishi E, Shen YL, He J, Tang Z-K, Wang W-X, Yücelen E, Li C, Gong Y, Gu L, Miao S, Liu L-M, Luo J, Ding Y (2017) Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat Energy 2:17111–17119

    Article  CAS  Google Scholar 

  36. Lytle FW (1976) Determination of d-band occupancy in pure metals and supported catalysts by measurement of the LIII X-ray absorption threshold. J Catal 43:376–379

    Article  CAS  Google Scholar 

  37. Kau LS, Hodgson KO, Solomon EI (1989) X-ray absorption edge and EXAFS study of the copper sites in zinc oxide methanol synthesis catalysts. J Am Chem Soc 111:7103–7109

    Article  CAS  Google Scholar 

  38. Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK, Jaramillo TF (2016) A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353:1011–1014

    Article  CAS  PubMed  Google Scholar 

  39. van der Vliet DF, Wang C, Li D, Paulikas AP, Greeley J, Rankin RB, Strmcnik D, Tripkovic D, Markovic NM, Stamenkovic VR (2012) Unique electrochemical adsorption properties of Pt-skin surfaces. Angew Chem 124:3193–3196

    Article  Google Scholar 

  40. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    Article  CAS  PubMed  Google Scholar 

  41. Denton AR, Ashcrof NW (1991) Vegard’s law. Phys Rev A 43:3161–3164

    Article  CAS  PubMed  Google Scholar 

  42. Shi Y, Wang J, Wang C, Zhai TT, Bao WJ, Xu JJ, Xia XH, Chen HY (2015) Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J Am Chem Soc 137:7365–7370

    Article  CAS  PubMed  Google Scholar 

  43. Patel PP, Datta MK, Velikokhatnyi OI, Kuruba R, Damodaran K, Jampani P, Gattu B, Shanthi PM, Damle SS, Kumta PN (2016) Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts. Sci Rep 6:28367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pi Y, Zhang N, Guo S, Guo J, Huang X (2016) Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett 16:4424–4430

    Article  CAS  PubMed  Google Scholar 

  45. Kwon T, Hwang H, Sa YJ, Park J, Baik H, Joo SH, Lee K (2017) Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv Funct Mater 27:1604688

    Article  Google Scholar 

  46. Lim J, Yang S, Kim C, Roh CW, Kwon Y, Kim YT, Lee H (2016) Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction. Chem Commun 52:5641–5644

    Article  CAS  Google Scholar 

  47. Audichon T, Napporn TW, Canaff C, Morais C, Comminges C, Kokoh KB (2016) IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. J Phys Chem C 120:2562–2573

    Article  CAS  Google Scholar 

  48. Audichon T, Mayousse E, Morisset S, Morais C, Comminges C, Napporn TW, Kokoh KB (2014) Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. Int J Hydrogen Energy 39:e16796

    Google Scholar 

  49. Nong HN, Oh HS, Reier T, Willinger E, Willinger MG, Petkov V, Teschner D, Strasser P (2015) Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54:2975–2979

    Article  CAS  Google Scholar 

  50. Hu W, Wang Y, Hu X, Zhou Y, Chen S (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22:6010–6016

    Article  CAS  Google Scholar 

  51. Liu G, Xu J, Wang Y, Wang X (2015) An oxygen evolution catalyst on an antimony doped tin oxide nanowire structured support for proton exchange membrane liquid water electrolysis. J Mater Chem A 3:20791–20800

    Article  CAS  Google Scholar 

  52. Li G, Li S, Xiao M, Ge J, Liu C, Xing W (2017) Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/meso-pore structure. Nanoscale 9:291–9298

    Google Scholar 

  53. Oh H-S, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6:3321–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nong HN, Gan L, Willinger E, Teschner D, Strasser P (2014) IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chem Sci 5:2955–2963

    Article  CAS  Google Scholar 

  55. Nayak S, McPherson IJ, Vincent KA (2018) Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy. Angew Chem 130:13037–13040

    Article  Google Scholar 

  56. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315:493–497

    Article  CAS  PubMed  Google Scholar 

  57. Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L, Xu J, Liu M, Zheng L, García de Arquer FP, Dinh CT, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, Luna PD, Janmohamed A, Xin HL, Yang H, Vojvodic A, Sargent EH (2016) Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352:333–337

    Google Scholar 

  58. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  CAS  PubMed  Google Scholar 

  59. Bajdich M, García-Mota M, Vojvodic A, Nørskov JK, Bell AT (2013) Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc 135:13521–13530

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancai Yao .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, Y. (2022). Engineering the Electronic Structure of Single Atom Ru Sites via Compressive Strain Boosts Acidic Water Oxidation Electrocatalysis. In: Controllable Synthesis and Atomic Scale Regulation of Noble Metal Catalysts. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-19-0205-5_3

Download citation

Publish with us

Policies and ethics