Skip to main content

Immersive Virtual Reality of Endoscopic and Open Spine Surgery Training

  • 708 Accesses

Abstract

Simulation in surgical education provides trainees with an opportunity to acquire or retain skills. Skill in spine surgery may be defined as technical or non-technical – procedural knowledge and understanding. As trainees begin to acquire skill, task recall gradually improves until it is autonomous. Fitts and Posner described a well-recognized skill acquisition from novice to levels of expertise in this manner [1]. The ultimate goal of a simulator is to provide training scenarios that graduate a trainee to replicate a skill or task to a level of proficiency in a clinical environment. This skill transfer, or transfer validity, of a simulator is dependent on the inherent capabilities or simulator traits, as well as the circumstances and temporality of its use. Research into the effectiveness of simulator training shows that initial and incremental improvements eventually plateau [2]. The ability of the simulator to provide efficient and effective training correlative to real-world experiences defines the simulator’s transfer effectiveness of skills [3].

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fitts P, Posner M. Human performance. Belmont, CA: Brooks/Cole; 1967.

    Google Scholar 

  2. Roscoe SN. Incremental transfer effectiveness. Tech Rep ARL-70-5/AFOSR-70-1. 1971.

    Google Scholar 

  3. Korteling JEH, Oprins EAPBE, Kallen VL. Measurement of effectiveness for training simulations. NATO RTO. 2009;SAS-095(2005):1–12.

    Google Scholar 

  4. Gallagher AG, O’Sullivan GC. How to develop metrics from first principles. In: Apell P, editor. Fundamentals of surgical simulation: principles and practices. Springer US; 2012. p. 133–40.

    Google Scholar 

  5. Reed D, Cook D, Beckman T. Association between funding and quality of published medical education research. JAMA. 2007;298:1002–9.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Hammick M, Dornan T, Steinert Y. Conducting a best evidence systematic review. Part 1: from idea to data coding. BEME guide no. 13. Med Teach. 2010;32(1):3–15.

    CrossRef  PubMed  Google Scholar 

  7. Wells G, Brodksy L, O’Connell D, Shea B, Henry D, Mayank S, et al. Evaluation of the Newcastle-Ottawa Scale (NOS): an assessment tool for evaluating the quality of non-randomized studies. XI Cochrane Colloquium: Evidence, Health Care and Culture. Barcelona, Spain; 2003.

    Google Scholar 

  8. Yardley S, Dornan T. Kirkpatrick’s levels and education “evidence”. Med Educ. 2012;46(1):97–106.

    CrossRef  PubMed  Google Scholar 

  9. Cook DA, Reed DA. Appraising the quality of medical education research methods: the medical education research study quality instrument and the Newcastle-Ottawa scale-education. Acad Med. 2015;90(8):1067–76.

    CrossRef  PubMed  Google Scholar 

  10. Carter FJ, Schijven MP, Aggarwal R, Grantcharov T, Francis NK, Hanna GB, et al. Consensus guidelines for validation of virtual reality surgical simulators. Simul Healthc. 2006;1(3):171–9.

    CrossRef  CAS  PubMed  Google Scholar 

  11. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(10 Suppl):S70–81.

    CrossRef  PubMed  Google Scholar 

  12. Slater M, Wilbur S. A framework for immersive virtual environments (FIVE): speculations on the role of presence in virtual environments. PRESENCE Virtual Augment Real. 1997;6(6):603–16.

    CrossRef  Google Scholar 

  13. Robles de la Torre G. The importance of the sense of touch in virtual and real environments. IEEE Multimed. 2006;13(3):24–30.

    CrossRef  Google Scholar 

  14. Lohre R, Bois A, Pollock J, Lapner P, McIlquham K, Athwal GS, et al. Effectiveness of immersive virtual reality for orthopaedic surgical skills and knowledge acquisition: a randomized controlled trial. JAMA Netw Open. 2020;3(12):e2031217.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Lohre R, Bois A, Athwal GS, Goel DP, (CSES) TCS and ES. Improved complex skill acquisition by immersive virtual reality training: a randomized controlled trial. J Bone Jt Surg. 2020;102(6):e26.

    CrossRef  Google Scholar 

  16. Arroyo-Berezowsky C, Jorba-Elguero P, Altamirano-Cruz MA, Quinzaños-Fresnedo J. Usefulness of immersive virtual reality simulation during femoral nail application in an orthopedic fracture skills course. J Musculoskelet Surg Res. 2019;3(4):326–33.

    CrossRef  Google Scholar 

  17. Blumstein G, Zukotynski B, Cevallos N, Ishmael C, Zoller S, Burke Z, et al. Randomized trial of a virtual reality tool to teach surgical technique for tibial shaft fracture intramedullary nailing. J Surg Educ. 2020;310:1–9.

    Google Scholar 

  18. Hooper J, Tsiridis E, Feng JE, Poulsides L, Macaulay W, The NYU Virtual Reality Consortium. Virtual reality simulation facilitates resident training in total hip arthroplasty: a randomized controlled trial. J Arthroplast. 2019;34(10):2278–83.

    CrossRef  Google Scholar 

  19. Logishetty K, Rudran B, Cobb JP. Virtual reality training improves trainee performance in total hip arthroplasty: a randomized controlled trial. Bone Jt J. 2019;101-B(12):1585–92.

    CrossRef  Google Scholar 

  20. Logishetty K, Wade GT, Rudran B, Beaule PE, Gupte CM, Cobb JP. A multicenter randomized controlled trial evaluating the effectiveness of cognitive training for anterior approach total hip arthroplasty. J Bone Jt Surg. 2020;102(2):pe7.

    CrossRef  Google Scholar 

  21. Racy M, Barrow A, Tomlinson J, Bello F. Development and validation of a virtual reality haptic femoral nailing simulator. J Surg Educ. 2021;78(3):1013–23.

    CrossRef  PubMed  Google Scholar 

  22. Bing E, Parham G, Cuevas A. Using low-cost virtual reality simulation to build surgical capacity for cervical cancer treatment. J Glob Oncol. 2019;5:1–7.

    PubMed  Google Scholar 

  23. Frederiksen J, Sorensen S, Konge L. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial. Surg Endosc. 2020;34(3):1244–52.

    CrossRef  PubMed  Google Scholar 

  24. Barre J, Michelet D, Truchot J. Virtual reality single-port sleeve gastrectomy training decreases physica and mental workload in novice surgeons: an exploratory study. Obes Surg. 2019;29(4):1309–16.

    CrossRef  PubMed  Google Scholar 

  25. Chaudhary A, Bukhari F, Iqbal W, Nawaz Z, Malik M. Laparoscopic training exercises using HTC VIVE. Intell Autom Soft Co. 2020;26(1):53–9.

    Google Scholar 

  26. Sankaranarayanan G, Odlozil C, Wells K. Training with cognitive load improves performance under similar conditions in a real surgical task. Am J Surg. 2020;220(3):620–9.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Xin B, Huang X, Wan W, Lv K, Hu Y, Wang J, et al. The efficacy of immersive virtual reality surgical simulator training for pedicle screw placement: a randomized double-blind controlled trial. Int Orthop. 2020;44(5):927–34.

    CrossRef  PubMed  Google Scholar 

  28. Xin B, Chen G, Wang Y, Bai G, Gao X, Chu J, et al. The efficacy of immersive virtual reality surgical simulator training for pedicle screw placement: a randomized double-blind controlled trial. World Neurosurg. 2019;124:e324–30. https://doi.org/10.1016/j.wneu.2018.12.090.

    CrossRef  Google Scholar 

  29. Dyer C. Bristol inquiry. BMJ. 2001;323(7306):181.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonzalvo A, Fitt G, Liew S, de la Harpe D, Turner P, Ton L, et al. The learning curve of pedicle screw placement: how many screws are enough? Spine (Phila Pa 1976). 2009;34(21):E761–5.

    CrossRef  Google Scholar 

  31. Butler AJ, Alam M, Wiley K, Ghasem A, Iii AJR, Wang JC. Endoscopic lumbar surgery: the state of the art in 2019. Neurospine. 2019;16(1):15–23.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Shi R, Wang F, Hong X, Wang Y-T, Bao J-P, Liu L, et al. Comparison of percutaneous endoscopic lumbar discectomy versus microendoscopic discectomy for the treatment of lumbar disc herniation: a meta-analysis. Int Orthop. 2019;43(4):923–37.

    CrossRef  PubMed  Google Scholar 

  33. Lohre R, Wang JC, Lewandrowski K-U, Goel DP. Virtual reality in spinal endoscopy: a paradigm shift in education to support spine surgeons. J Spine Surg. 2020;6(1):S208–23.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Lohre R, Athwal GS, Warner JP, Goel DP. The evolution of virtual reality in shoulder and elbow surgery. JSES Int. 2020;4(2):215–23.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Leleve A, McDaniel T, Rossa C. Haptic training simulation. Front Virtual Real. 2020;1:1–3.

    CrossRef  Google Scholar 

  36. Durlach NI, Mavor AS, editors. Committee on Virtual Reality Research and Development. Virtual reality: scientific and technological challenges. Washington, D.C.: National Academy Press; 1995. p. 161–87.

    Google Scholar 

  37. Tan H, Srinivasan M, Eberman B, Cheng B. Human factors for the design of force-reflecting haptic interfaces. In: Proceedings of ASME winter annual meeting. ASME; 1994.

    Google Scholar 

  38. Brooks T. Telerobotic response requirements. In: Proceedings of the IEEE international conference on systems, man and cybernetics. Report No. STX/ROB/90-03. Los Angeles: STX Corporation; 1990.

    Google Scholar 

  39. Zhu M, Sun Z, Zhang Z, Shi Q, He T, Liu H, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci Adv. 2020;6(19):eaaz8693.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hayward V, Astley OR. Performance measures for haptic interfaces. In: Giralt G, Hirzinger G, editors. Robotics research. London: Springer; 1996. p. 195–206.

    CrossRef  Google Scholar 

  41. Lavé A, Gondar R, Demetriades AK, Meling TR. Ergonomics and musculoskeletal disorders in neurosurgery: a systematic review. Acta Neurochir. 2020;162(9):2213–20. https://pubmed.ncbi.nlm.nih.gov/32705353

    CrossRef  PubMed  Google Scholar 

  42. Bugdadi A, Sawaya R, Bajunaid K, Olwi D, Winkler-Schwartz A, Ledwos N, et al. Is virtual reality surgical performance influenced by force feedback device utilized? J Surg Educ. 2019;76(1):262–73.

    CrossRef  PubMed  Google Scholar 

  43. Weech S, Kenny S, Barnett-Cowan M. Presence and cybersickness in virtual reality are negatively related: a review. Front Psychol. 2019;10:158. https://pubmed.ncbi.nlm.nih.gov/30778320

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472(6):1711–7. https://pubmed.ncbi.nlm.nih.gov/24510358

    CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Iprenburg M, Wagner R, Godschalx A, Telfeian AE. Patient radiation exposure during transforaminal lumbar endoscopic spine surgery: a prospective study. Neurosurg Focus. 2016;40(2):E7.

    CrossRef  PubMed  Google Scholar 

  46. Wewel JT, Godzik J, Uribe JS. The utilization of minimally invasive surgery techniques for the treatment of spinal deformity. J Spine Surg (Hong Kong). 2019;5(Suppl 1):S84–90.

    CrossRef  PubMed Central  Google Scholar 

  47. Marappan K, Jothi R, Paul RS. Microendoscopic discectomy (MED) for lumbar disc herniation: comparison of learning curve of the surgery and outcome with other established case studies. J Spine Surg (Hong Kong). 2018;4(3):630–7.

    CrossRef  Google Scholar 

  48. Nowitzke AM. Assessment of the learning curve for lumbar microendoscopic discectomy. Neurosurgery. 2005;56(4):755–62.

    CrossRef  PubMed  Google Scholar 

  49. Soliman HM. Irrigation endoscopic discectomy: a novel percutaneous approach for lumbar disc prolapse. Eur Spine J. 2013;22(5):1037–44. https://www.ncbi.nlm.nih.gov/pubmed/23392557

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Bohl MA, McBryan S, Nakaji P, Chang SW, Turner JD, Kakarla K. Development and first clinical use of a novel anatomical and biomechanical testing platform for scoliosis. J Spine Surg. 2019;5(3):329–36.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Hu Z, Li X, Cui J, He X, Li C, Han Y, et al. Significance of preoperative planning software for puncture and channel establishment in percutaneous endoscopic lumbar DISCECTOMY: a study of 40 cases. Int J Surg. 2017;41:97–103. https://doi.org/10.1016/j.ijsu.2017.03.059.

    CrossRef  PubMed  Google Scholar 

  52. Kulcsár Z, Shorten G. Preliminary evaluation of a virtual reality-based simulator for learning spinal anesthesia. J Clin Anesth. 2013;25(2):98–105.

    CrossRef  PubMed  Google Scholar 

  53. Färber M, Hummel F, Gerloff C, Handels H. Virtual reality simulator for the training of lumbar punctures. Methods Inf Med. 2009;48(5):493–501.

    CrossRef  PubMed  Google Scholar 

  54. Moult E, Ungi T, Welch M, Lu J, McGraw R, Fichtinger G. Ultrasound-guided facet joint injection training using Perk Tutor. Int J Comput Assist Radiol Surg. 2013;8(5):831–6.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Yu H, Zhou Z, Lei X, Liu H, Fan G, He S. Mixed reality-based preoperative planning for training of percutaneous transforaminal endoscopic discectomy: a feasibility study. World Neurosurg. 2019;129:e767–75. https://doi.org/10.1016/j.wneu.2019.06.020.

    CrossRef  PubMed  Google Scholar 

  56. Keri Z, Sydor D, Ungi T, Holden MS, McGraw R, Mousavi P, et al. Computerized training system for ultrasound-guided lumbar puncture on abnormal spine models: a randomized controlled trial. Can J Anaesth. 2015;62(7):777–84.

    CrossRef  PubMed  Google Scholar 

  57. Chitale R, Ghobrial GM, Lobel D, Harrop J. Simulated lumbar minimally invasive surgery educational model with didactic and technical components. Neurosurgery. 2013;73(4):107–10.

    CrossRef  PubMed  Google Scholar 

  58. Archavlis E, Schwandt E, Kosterhon M, Gutenberg A, Nimer A, Giese A, et al. A modified microsurgical endoscopic assisted transpedicular corpectomy of the thoracic spine based on virtual 3D planning, technical note. World Neurosurg. 2016; https://doi.org/10.1016/j.wneu.2016.04.043.

  59. Liu X, Bai H, Guoli S, Zhao Y, Han J. Augmented reality system training for minimally invasive spine surgery. IEEE; 2017.

    CrossRef  Google Scholar 

  60. Zhou Z, Hu S, Zhao Y, Zhu Y, Wang C, Gu X, et al. Feasibility of virtual reality combined with isocentric navigation in transforaminal percutaneous endoscopic discectomy: a cadaver study. Orthop Surg. 2019;11:493–9.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Koch A, Pfandler M, Stefan P, Wucherer P, Lazarovici M, Navab N, et al. Say, what is on your mind? Surgeons’ evaluations of realism and usability of a virtual reality vertebroplasty simulator. Surg Innov. 2019;26(2):234–43.

    CrossRef  PubMed  Google Scholar 

  62. Wei P, Yao Q, Xu Y, Zhang H, Gu Y, Wang L. Percutaneous kyphoplasty assisted with/without mixed reality technology in treatment of OVCF with IVC: a prospective study. J Orthop Surg Res. 2019;14(68):1–9.

    Google Scholar 

  63. Wucherer P, Stefan P, Abhari K, Fallavollita P, Weigl M, Lazarovici M, et al. Vertebroplasty performance on simulator for 19 surgeons using hierarchical task. Analysis. 2015;34(8):1730–7.

    Google Scholar 

  64. Weigl M, Stefan P, Abhari K, Wucherer P, Fallavollita P, Lazarovici M, et al. Intra-operative disruptions, surgeon’ s mental workload, and technical performance in a full-scale simulated procedure. Surg Endosc. 2016;30(2):559–66.

    CrossRef  PubMed  Google Scholar 

  65. Gasco J, Patel A, Ortega-barnett J, Branch D, Kuo YF, Luciano C, et al. Virtual reality spine surgery simulation: an empirical study of its usefulness virtual reality spine surgery simulation: an empirical study of its usefulness. Neurol Res. 2014;36(11):968–73.

    CrossRef  PubMed  Google Scholar 

  66. Gottschalk MB, Yoon ST, Park DK, Rhee JM, Mitchell PM. Surgical training using three-dimensional simulation in placement of cervical lateral mass screws: a blinded randomized control trial. Spine J. 2015;15(1):168–75. https://doi.org/10.1016/j.spinee.2014.08.444.

    CrossRef  PubMed  Google Scholar 

  67. Shi J, Hou Y, Lin Y, Chen H, Yuan W. Role of visuohaptic surgical training simulator in resident education of orthopedic surgery. World Neurosurg. 2017;111:e98–e104. https://doi.org/10.1016/j.wneu.2017.12.015.

    CrossRef  PubMed  Google Scholar 

  68. Gallagher AG, O’Sullivan GC. Fundamentals of surgical simulation: principles and practices. New York: Springer; 2012. p. 1–372.

    CrossRef  Google Scholar 

  69. Vyas RM, Sayadi LR, Bendit D, Hamdan US. Using virtual augmented reality to remotely proctor overseas surgical outreach: building long-term international capacity and sustainability. Plast Reconstr Surg. 2020;146(5):622e–9e. https://journals.lww.com/plasreconsurg/Fulltext/2020/11000/Using_Virtual_Augmented_Reality_to_Remotely.40.aspx

    CrossRef  CAS  PubMed  Google Scholar 

  70. Atesok K, Satava RM, Van Heest A, Hogan MV, Pedowitz RA, Fu FH, et al. Retention of skills after simulation-based training in orthopaedic. J Am Acad Orthop Surg. 2016;24(8):505–14.

    CrossRef  PubMed  Google Scholar 

  71. Perez RS, Skinner A, Weyhrauch P, Niehaus J, Lathan C, Schwaitzberg SD, et al. Prevention of surgical skill decay. Mil Med. 2013;178(10):76–87.

    CrossRef  PubMed  Google Scholar 

  72. Childers PC, Maggard-Gibbons M. Understanding costs of care in the operating room. JAMA Surg. 2018;153(4):e176233.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Mallari B, Spaeth EK, Goh H, Boyd BS. Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta-analysis. J Pain Res. 2019;12:2053–85.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny P. Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goel, D.P., Lohre, R., Wang, J.C., Kim, JS. (2022). Immersive Virtual Reality of Endoscopic and Open Spine Surgery Training. In: Kim, JS., Härtl, R., Wang, M.Y., Elmi-Terander, A. (eds) Technical Advances in Minimally Invasive Spine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-0175-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0175-1_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0174-4

  • Online ISBN: 978-981-19-0175-1

  • eBook Packages: MedicineMedicine (R0)