Skip to main content

Metabolism of Estrogen and Testosterone and Their Role in the Context of Metabolic Diseases

  • Chapter
  • First Online:
Sex/Gender-Specific Medicine in the Gastrointestinal Diseases
  • 742 Accesses

Abstract

Sex hormones define the fundamental sexual differences between men and women. Production and secretion of sex hormones are regulated by negative feedback in the hypothalamus-pituitary-gonadal axis. The main action of sex hormones exerts through nuclear receptors. The main female hormone is estrogen. Estrogen plays an important role in bone metabolism, whose main effect is inhibition of bone resorption and promotion of bone formation. The decrease of estrogen after menopause is the main contributor of osteoporosis in women, which results in seven- to tenfold higher risk of osteoporosis in postmenopausal women compared to men. Testosterone, the major male sex hormone, increases muscle mass and reduces visceral fat. Deprivation of testosterone for the treatment of prostate cancer increases the risk of obesity, type 2 diabetes mellitus, and cardiovascular diseases. However, congenital adrenal hyperplasia and polycystic ovary syndrome, which are a state of hyperandrogenism in women, is associated with increased risk of type 2 diabetes mellitus and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burger HG. Androgen production in women. Fertil Steril. 2002;77(Suppl 4):S3–5.

    Article  Google Scholar 

  2. Torjesen PA, Sandnes L. Serum testosterone in women as measured by an automated immunoassay and a RIA. Clin Chem. 2004;50:678; author reply -9.

    Google Scholar 

  3. Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116:561–70.

    Article  CAS  Google Scholar 

  4. Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34:309–38.

    Article  CAS  Google Scholar 

  5. Nelson ER, Wardell SE, McDonnell DP. The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols: implications for the treatment and prevention of osteoporosis. Bone. 2013;53:42–50.

    Article  CAS  Google Scholar 

  6. Shohat-Tal A, Sen A, Barad D, Kushnir V, Gleicher N. Genetics of androgen metabolism in women with infertility and hypoandrogenism. Nat Rev Endocrinol. 2015;11:429–41.

    Article  CAS  Google Scholar 

  7. Smith EP, Specker B, Bachrach BE, Kimbro KS, Li XJ, Young MF, et al. Impact on bone of an estrogen receptor-alpha gene loss of function mutation. J Clin Endocrinol Metab. 2008;93:3088–96.

    Article  CAS  Google Scholar 

  8. Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998;13:763–73.

    Article  CAS  Google Scholar 

  9. Okman-Klis T. Estrogen deficiency and osteoporosis. In: Dionyssiatis Y, editor. Advances in osteoporosis. London: IntechOpen; 2015.

    Google Scholar 

  10. Cauley JA, Robbins J, Chen Z, Cummings SR, Jackson RD, LaCroix AZ, et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA. 2003;290:1729–38.

    Article  CAS  Google Scholar 

  11. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33.

    Article  CAS  Google Scholar 

  12. Carpiuc KT, Wingard DL, Kritz-Silverstein D, Barrett-Connor E. The association of angina pectoris with heart disease mortality among men and women by diabetes status: the Rancho Bernardo Study. J Womens Health (Larchmt). 2010;19:1433–9.

    Article  Google Scholar 

  13. Kanaya AM, Grady D, Barrett-Connor E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Arch Intern Med. 2002;162:1737–45.

    Article  Google Scholar 

  14. Mendelsohn ME. Protective effects of estrogen on the cardiovascular system. Am J Cardiol. 2002;89:12E-7E; discussion 7E-8E.

    Google Scholar 

  15. Margolis KL, Bonds DE, Rodabough RJ, Tinker L, Phillips LS, Allen C, et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia. 2004;47:1175–87.

    Article  CAS  Google Scholar 

  16. Yan H, Yang W, Zhou F, Li X, Pan Q, Shen Z, et al. Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor Foxo1. Diabetes. 2019;68:291–304.

    Article  CAS  Google Scholar 

  17. Mauvais-Jarvis F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab. 2011;22:24–33.

    Article  CAS  Google Scholar 

  18. Anderwald C, Gastaldelli A, Tura A, Krebs M, Promintzer-Schifferl M, Kautzky-Willer A, et al. Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males. J Clin Endocrinol Metab. 2011;96:515–24.

    Article  CAS  Google Scholar 

  19. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:1929–35.

    Article  CAS  Google Scholar 

  20. Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295:1288–99.

    Article  CAS  Google Scholar 

  21. Furlanetto TW, Nguyen LQ, Jameson JL. Estradiol increases proliferation and down-regulates the sodium/iodide symporter gene in FRTL-5 cells. Endocrinology. 1999;140:5705–11.

    Article  CAS  Google Scholar 

  22. Kavanagh DO, McIlroy M, Myers E, Bane F, Crotty TB, McDermott E, et al. The role of oestrogen receptor {alpha} in human thyroid cancer: contributions from coregulatory proteins and the tyrosine kinase receptor HER2. Endocr Relat Cancer. 2010;17:255–64.

    Article  CAS  Google Scholar 

  23. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981;53:58–68.

    Article  CAS  Google Scholar 

  24. Kautzky-Willer A. Sex difference in endocrinology. In: Oertelt-Prigione S, editor. Sex and gender aspects in clinical medicine. London: Springer; 2012. p. 125–42.

    Chapter  Google Scholar 

  25. Rosner W, Hryb DJ, Khan MS, Nakhla AM, Romas NA. Sex hormone-binding globulin mediates steroid hormone signal transduction at the plasma membrane. J Steroid Biochem Mol Biol. 1999;69:481–5.

    Article  CAS  Google Scholar 

  26. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

    Article  CAS  Google Scholar 

  27. Snyder PJ, Kopperdahl DL, Stephens-Shields AJ, Ellenberg SS, Cauley JA, Ensrud KE, et al. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA Intern Med. 2017;177:471–9.

    Article  Google Scholar 

  28. Finkelstein JS, Lee H, Burnett-Bowie SA, Pallais JC, Yu EW, Borges LF, et al. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369:1011–22.

    Article  CAS  Google Scholar 

  29. Inui S, Itami S. Androgen actions on the human hair follicle: perspectives. Exp Dermatol. 2013;22:168–71.

    Article  CAS  Google Scholar 

  30. Batrinos ML. Testosterone and aggressive behavior in man. Int J Endocrinol Metab. 2012;10:563–8.

    Article  CAS  Google Scholar 

  31. Dreher JC, Dunne S, Pazderska A, Frodl T, Nolan JJ, O’Doherty JP. Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males. Proc Natl Acad Sci U S A. 2016;113:11633–8.

    Article  CAS  Google Scholar 

  32. Wang C, Jackson G, Jones TH, Matsumoto AM, Nehra A, Perelman MA, et al. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care. 2011;34:1669–75.

    Article  CAS  Google Scholar 

  33. Araujo AB, Dixon JM, Suarez EA, Murad MH, Guey LT, Wittert GA. Clinical review: endogenous testosterone and mortality in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96:3007–19.

    Article  CAS  Google Scholar 

  34. Agledahl I, Hansen JB, Svartberg J. Impact of testosterone treatment on postprandial triglyceride metabolism in elderly men with subnormal testosterone levels. Scand J Clin Lab Invest. 2008;68:641–8.

    Article  CAS  Google Scholar 

  35. Kapoor D, Clarke S, Stanworth R, Channer KS, Jones TH. The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2007;156:595–602.

    Article  CAS  Google Scholar 

  36. Nakamura K, Fuster J, Walsh K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol. 2014;63:250–9.

    Article  Google Scholar 

  37. Levine GN, D’Amico AV, Berger P, Clark PE, Eckel RH, Keating NL, et al. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation. 2010;121:833–40.

    Article  Google Scholar 

  38. Jones TH, Saad F. The effects of testosterone on risk factors for, and the mediators of, the atherosclerotic process. Atherosclerosis. 2009;207:318–27.

    Article  CAS  Google Scholar 

  39. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37:467–520.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hee Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahn, C.H., Choi, S.H. (2022). Metabolism of Estrogen and Testosterone and Their Role in the Context of Metabolic Diseases. In: Kim, N. (eds) Sex/Gender-Specific Medicine in the Gastrointestinal Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-0120-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0120-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0119-5

  • Online ISBN: 978-981-19-0120-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics