Skip to main content

Challenges and Opportunities to Treat Water Pollution

  • Chapter
  • First Online:
Paths to Clean Water Under Rapid Changing Environment in China

Part of the book series: SpringerBriefs in Water Science and Technology ((BRIEFSWATER))

Abstract

In recent years, the global population has exceeded 7 billion. Such a huge population has greatly affected the global environment. In particular, the eutrophication of rivers, lakes, reservoirs, cities and agricultural areas have become one of the major environmental challenges facing the world, especially this situation is even more severe in Europe and China. Eutrophication has received high international and domestic attention due to its economic and ecological consequences. The intensification of water eutrophication had caused frequent occurrence of cyanobacteria blooms, which have brought serious harm to human production and life, and the scope of its influence has been continuously expanded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball AS, Williams M, Vincent D et al (2001) Algal growth control by a barley straw extract. Biores Technol 77(2):177–181

    Article  CAS  Google Scholar 

  2. Qin B (1998) A review and prospect about the aquatic environment studies in Taihu Lake. J Lake Sci 10(4):1–9

    Article  Google Scholar 

  3. Xiao Y, Shi JL, Pei MP (2006) Ecological restoration of urban eutrophic lakes-a case study on the physical and ecological engineering in Lake Mochou, Nanjing. J Lake Sci 18(3):218–224

    Google Scholar 

  4. Chun HJ, Ka HL, Yang CW (2004) Study on control of blue-green blooms in moon lake by using ameliorated alum plasma and filter-feeding animals. J Ningbo Univ (Natural science & Engineering Edition) 17(2):147–151

    Google Scholar 

  5. Kasem C (2012) The King’s initiatives using water hyacinth to remove heavy metals and plant nutrients from wastewater through Bueng Makkasan in Bangkok, Thailand. Ecol Eng 39:40–52

    Article  Google Scholar 

  6. Coveney MF, Stites DL, Lowe EF (2003) Nutrient removal from eutrophic lake water by wetland filtration. Ecol Eng 19(2):141–159

    Article  Google Scholar 

  7. Deqi L (2005) Identification to effects of eco-restoration for water bodies of eutrophication. East China Normal University

    Google Scholar 

  8. Ding XW, Yang W, Xue K et al (2010) Control of water blooms of urban eutrophic lake with compound microorganisms in restoration project. Environ Sci Technol 33(7):150–154

    Google Scholar 

  9. Fabbricino M, Petta L (2007) Drinking water denitrification in membrane bioreactor/membrane contactor systems. Desalination 210(1–3):163–174

    Article  CAS  Google Scholar 

  10. Gómez MA, González-López J, Hontoria-García E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80(1):69–80

    Google Scholar 

  11. Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22(3):313–339

    Article  Google Scholar 

  12. Guangwei Z (2008) Eutrophic status and causing factors for a large, shallow and subtropical Lake Taihu, China. J Lake Sci 20(1):21–26

    Article  Google Scholar 

  13. Guo H, Zhu J, Yang Y (2008) Research status and development of technologies for controlling agricultural non-point source pollution. Trans Chin Soc Agric Eng.

    Google Scholar 

  14. Guo XW, Pei MP (1999) Influence of some artificial controls on eutrophic algal population dynamics. Chin J Environ Sci 2:71–74

    Google Scholar 

  15. Hang C, Ke-Tan H, Zhong-Ping C et al (2010) Application of bio-film technology in polluted surface water bio-remediation. J Zhejiang Water Conserv Hydropower Coll 22(1):43–46

    Google Scholar 

  16. Shen CH (2001) Restoration project of the ecosystem in Tai Lake. Resour & Environ Yangtza Basin 10(2):173–178

    Google Scholar 

  17. Liu H, Dai ML, Liu XY et al (2004) Performance of treatment wetland systems for surface water quality improvement. Huanjing Kexue 25(4):65–69

    Google Scholar 

  18. Hong M, Mao, Zhou T (2007) Advances in in-situ ecological restoration of eutrophic water bodies. J Chengdu Text Coll 34(4):156–159

    Google Scholar 

  19. Huang T (2016) Water pollution and water quality control of selected Chinese reservoir basins. Handbook of Environmental Chemistry

    Google Scholar 

  20. Huang TL, Cong HB, Zhou ZM (2006) The onsite experiment study of enhanced bio-contact oxidation process for pretreatment of Luanhe River water. Acta Sci Circum 26(5):785–790

    CAS  Google Scholar 

  21. Ting H, San J, Hai BC (2008) Experimental study on the water-lifting aerator enhanced chemical oxidation process for polluted raw water. Water & Wastewater Engineering

    Google Scholar 

  22. Xu W, Yong-Gang W, Chang-Hong S et al (2016) Formation mechanism and assessment method for urban black and odorous water body: a review. Chin J Appl Ecol 27(4):1331–1340

    Google Scholar 

  23. Huiguang G, Pijing M (2000) Treatment framework and estimated investment of Dianchi Lake. Environmental Science Survey 19:109–112

    Google Scholar 

  24. Huo YZ, He WH, Luo K et al (2010) Bioremediation efficiency of applying Daphnia magna and submerged plants: a case study in Dishui Lake of Shanghai, China. Chin J Appl Ecol 21:495–499

    CAS  Google Scholar 

  25. Jeong JH, Jin HJ, Sohn CH et al (2000) Algicidal activity of the seaweed corallina pilulifera against red tide microalgae. J Appl Phycol 12:37–43

    Article  Google Scholar 

  26. Jiang JH, Huang Q, Sun ZD (2005) Countermeasures for protection and management of lakes in middle and lower reaches of the Yangtze River. Resour Environ Yangtze Basin 14(1):40–43

    Google Scholar 

  27. Kim Y, Kim W-J (2000) Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds. Water Res 34(13):3285–3294

    Article  CAS  Google Scholar 

  28. Kong YJ, Xu JD, Liu QG et al (2017) Ecological restoration technology applied in the lakeside zone demonstration project of Gehu Lake. J Hydroecology 38(2):17–24

    CAS  Google Scholar 

  29. Li JH, Shen ZH, Wu RH et al (2018) Effects of ecological remediation project in the lakeside zone of Chongshan, Taihu Lake on eutrophic water environment. J Huaihai Inst Technol (Social Sciences Edition)

    Google Scholar 

  30. Li W, Dong SW (2018) Application of ecological revetment in landscape design. Shanxi Architecture

    Google Scholar 

  31. Li XN, Hai LS, Wei L (2010) An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecol Eng 36(4):382–390

    Article  Google Scholar 

  32. Li LF, Li YH, Biswas DK et al (2008) Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresour Technol 99(6):1656–1663

    Article  CAS  Google Scholar 

  33. Su LX, Chen JZ, Cao WP et al (2010) Remediation of landscape water using biofilm reactor with bamboo filamentous biocarrier. J Kunming Univ Sci Technol 35(1):93–96

    CAS  Google Scholar 

  34. Ni LX, Kumud A, Ren GX et al (2013) Preparation and characterization of anti-algal sustained-release granules and their inhibitory effects on algae. Chemosphere 91(5):608–615

    Article  CAS  Google Scholar 

  35. Ma Q, Liu JJ, Gao MY (2010) Amount of pollutants discharged into Lake Taihu from Jiangsu Province, 1998–2007. J Lake Sci 22(1):29–34

    Article  CAS  Google Scholar 

  36. Ma RH, Yang GH, Duan HT et al (2010) China’s lakes at present: number, area and spatial distribution. Sci China Earth Sci 41(3):394–401

    Google Scholar 

  37. Macías FA et al (2008) Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem Rev 7(1):155–178

    Article  CAS  Google Scholar 

  38. Mei LX et al (2000) Control of algae bloom in eutrophic water by effective microorganisms. Actaentiarum Naturalium Universitatis Sunyatseni, 39

    Google Scholar 

  39. Li MZ, Yao LZ, Zhou SQ (1992) Population variation of phytoplankton in West Lake of Hangzhou before and after diluting sewages with empting into river water and effect of controlling eutrophication. Chin J Appl Ecol 3(3):266–272

    Google Scholar 

  40. Meng C, Li YY, Xu XG et al (2013) A case study on non-point source pollution and environmental carrying capacity of animal raising industry in subtropical watershed. Acta Sci Circum 33(2):635–643

    CAS  Google Scholar 

  41. Kong FX, Hu WP, Gu XH et al (2007) On the cause of cyanophyta bloom and pollution in water intake area and emergency measures in Meiliang Bay, Lake Taihu in 2007. J Lake Sci 19(4):357–358

    Article  Google Scholar 

  42. Naumann, MS et al (2015) Monitoring of coastal coral reefs near Dahab (Gulf of Aqaba, Red Sea) indicates local eutrophication as potential cause for change in benthic communities. Environ Monit Assess 187(2):44

    Google Scholar 

  43. Ni LX et al (2012) Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88(9):1051–1057

    Article  CAS  Google Scholar 

  44. Ni W, Zhang G, Wang Y (2004) Environmental protection dredging and its effects for intrinsic pollution of lake: Case study of Nanhu Lake in Changchun. Res Environ Sci 17(2):34–37

    Google Scholar 

  45. Qin BQ (2009) Lake eutrophication: Control countermeasures and recycling exploitation. Ecol Eng 35(11):1569–1573

    Article  Google Scholar 

  46. Lu Q, He ZL, Graetz DA et al (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17(1):84–96

    Google Scholar 

  47. Rice EL (1984) Allelopathy, 2nd edn. Physiological Ecology

    Google Scholar 

  48. Rivas Z, Medina H, J Gutiérrez et al (2000) Nitrogen and phosphorus levels in sediments from tropical Catatumbo River (Venezuela). Water Air Soil Pollut 117(1–4):27–37

    Google Scholar 

  49. Ronghua MA, Jinglu WU, Shijie LI et al (2011) China’s lakes at present: number, area and spatial distribution. Sci China 54(2):283–289

    Article  CAS  Google Scholar 

  50. Rouzic BL, Thiébaut G, Brient L (2016) Selective growth inhibition of cyanobacteria species (Planktothrixagardhii) by a riparian tree leaf extract. Ecol Eng 97:74–78

    Google Scholar 

  51. Tian RN, Zhu M, Sun XX et al (2011) Nitrogen and phosphorus removal effects of different hydrophyte combinations under simulated eutrophic conditions. J Beijing For Univ 33(6):191–195

    Google Scholar 

  52. Shan M, Liu Y, Yang T (2007) Study on purification of eutrophication lake by dominant bacterial agents. Ecology and Environment.

    Google Scholar 

  53. Sheffield VC, Cox DR, Lerman LS et al (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci 86(1):232–236

    Article  CAS  Google Scholar 

  54. Sm TAN (2016) Comparison of several ecological restoration techniques for eutrophic water bodies. China Water Transp 16(7):113–116

    Google Scholar 

  55. Singer A, Parnes S, Gross A et al (2008) A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture. Aquacult Eng 39(2):72–77

    Article  Google Scholar 

  56. Singh D, Gupta R, Tiwari A (2012) Phytoremediation of lead from wastewater using aquatic plants. Int J Biomed Res 2(7):411–421

    Google Scholar 

  57. Tellez MR, Estell RE, Fredrickson E et al (2001) Extracts of Flourensia cernua (L): volatile constituents and antifungal, antialgal, and antitermite bioactivities. J Chem Ecol 27(11):2263–2273

    Article  CAS  Google Scholar 

  58. Chen T, Zhang Y, Gao Y et al (2016) Different combination of fishes, benthic animals and aquatic plants control of eutrophication water bodies by mesocosm experiment. Chin J Environ Eng 10(10):5511–5520

    Google Scholar 

  59. EPA OU. Nonpoint source pollution: The nation's largest water quality problem

    Google Scholar 

  60. Wang S, Dou HS, Chen KZ et al (1998) China lakes record. Science Press Ltd, Beijing

    Google Scholar 

  61. Jin T, Chao L, Li W et al (2009) Advances in heavy metal pollution in marine environment. Fish Sci

    Google Scholar 

  62. Bonsignore M, Manta DS, Sharif AT et al (2018) Marine pollution in the Libyan coastal area: Environmental and risk assessment. Mar Pollut Bull 128:340–352

    Article  CAS  Google Scholar 

  63. Kucuksezgin F, Kontas A, Altay O et al (2006) Assessment of marine pollution in Izmir Bay: nutrient, heavy metal and total hydrocarbon concentrations. Environ Int 32:41–51

    Article  CAS  Google Scholar 

  64. Ozreti B, Krajnovi-Ozreti M, Santin J et al (1990) As, Cd, Pb, and Hg in benthic animals from the Kvarner-Rijeka Bay region, Yugoslavia. Mar Pollut Bull 21(12):595–598

    Article  Google Scholar 

  65. Jha SK, Chavan SB, Pandit GG et al (2003) Geochronology of Pb and Hg pollution in a coastal marine environment using global fallout 137 Cs. J Environ Radioact 69(1–2):145–157

    Article  CAS  Google Scholar 

  66. Baranowska I, Czernicki K, Aleksandrowicz R (1995) The analysis of lead, cadmium, zinc, copper and nickel content in human bones from the upper Silesian industrial district. Sci Total Environ 159(2–3):155–162

    Article  CAS  Google Scholar 

  67. Gassmann G (1982) Detection of aliphatic hydrocarbons derived by recent “bio-conversion” from fossil fuel oil in North Sea waters. Mar Pollut Bull 13(9):309–315

    Article  CAS  Google Scholar 

  68. Maskaoui K, Zhou JL, Zheng TL et al (2005) Organochlorine micropollutants in the Jiulong River Estuary and Western Xiamen Sea, China. Mar Pollut Bull 51(8–12):950–959

    Article  CAS  Google Scholar 

  69. Wu Y, Zhang S, Chen R et al (2015) Residues of organophosphorus insecticides in sediment around a highly eutrophic lake, Eastern China. J Soils Sediments 15(2):436–444

    Article  CAS  Google Scholar 

  70. Xia C, Lam J, Wu X et al (2012) Polychlorinated biphenyls (PCBs) in marine fishes from China: levels, distribution and risk assessment. Chemosphere 89(8):944–949

    Article  CAS  Google Scholar 

  71. Fatta D, Canna-Michaelidou S, Michael C et al (2007) Organochlorine and organophosphoric insecticides, herbicides and heavy metals residue in industrial wastewaters in Cyprus. J Hazard Mater 145(1–2):169–179

    Article  CAS  Google Scholar 

  72. Zhao DZ, Zhao L, Zhang FS et al (2004) Temporal occurrence and spatial distribution of red tide events in China’s coastal waters. Hum Ecol Risk Assess Int J 10(5):945–957

    Article  Google Scholar 

  73. He DL, Yin GF, Dong FQ et al (2010) Research on the additives to reduce radioactive pollutants in the building materials containing fly ash. J Hazard Mater 177(1–3):573–581

    Article  CAS  Google Scholar 

  74. Mattsson S, Finck R, Nilsson M (1980) Distribution of activation products from barsebäck nuclear power plant (Sweden) in the marine environment. Temporal and spatial variations as established by seaweed. Environ Pollut 1(2):105–115

    Google Scholar 

  75. Yang GS, Ma RH, Zhang L et al (2010) Lake status, major problems and protection strategy in China. J Lake Sci 22(6):799–810

    Google Scholar 

  76. Wang JF, Chen JA, sun QQ et al (2018) Effect of dredging on the sediment pollution in Aha reservoir. Environ Eng

    Google Scholar 

  77. Zhou Y et al (2010) Remediation of eutrophic water by ecological floating bed. Shanghai Chem Ind 35(11):1–4

    CAS  Google Scholar 

  78. Cao Y, Sun CJ (2009) Application of ecological floating beds to water restoration and its design. Environ Sci Technol 32(2):121–124

    Google Scholar 

  79. Zhang HL, Wei F, Wang YP et al (2013) Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. Environ Sci Technol 47(20):11482–11489

    Article  CAS  Google Scholar 

  80. Zhang W, Xu F, He W et al (2009) Inhibitive effects of three compositae plants on Microcystis aeruginosa. Front Environ Sci Eng 3(1):48–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Ni, L., Guo, Y., Zhao, X., Dong, Y., Cheng, Y. (2022). Challenges and Opportunities to Treat Water Pollution. In: Paths to Clean Water Under Rapid Changing Environment in China. SpringerBriefs in Water Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0091-4_2

Download citation

Publish with us

Policies and ethics