Skip to main content

Stability of Taylor-Couette Flow Between Concentric Rotating Cylinders

  • Chapter
  • First Online:

Abstract

The energy gradient theory is used to study the instability of Taylor-Couette flow between two concentric rotating cylinders, and the critical condition of the primary instability is in agreement with the experiments in the literature. It is shown that turbulent transition in Taylor-Couette flows is generated by the singularities raised in disturbed laminar flow. A mechanism of energy transfer between fluid layers gives the description of fluid flow and flow instability. It is uncovered by simulations of Taylor-Couette flow with LES that the discontinuity of tangential velocity caused by zero-shear-stress in temporal evolution leads to spikes, which form the singularities of the flow field. As the Reynolds number increases, these spikes can be maintained and thus results in turbulence. These velocity spikes caused by zero-shear-stress form the large scale structure in the core region of the channel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altmeyer S, Do Y, Lai YC (2015) Ring-bursting behavior en route to turbulence in narrow-gap Taylor-Couette flows. Phys Rev E 92:053018

    MathSciNet  Google Scholar 

  • Andereck CD, Liu SS, Swinney HL (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164:155–183

    Google Scholar 

  • Bake S, Fernholz HH, Kachanov YS (2000) Resemblance of K- and N-regimes of boundary-layer transition at late stages. Eur J Mech B/fluids 19(1):1–22

    MATH  Google Scholar 

  • Berghout P, Dingemans RJ, Zhu X, Verzicco R, Stevens RJAM, van Saarloos W, Lohse D (2020) Direct numerical simulations of spiral Taylor-Couette turbulence. J Fluid Mech 887:A18

    MathSciNet  MATH  Google Scholar 

  • Bilson M, Bremhorst K (2007) Direct numerical simulation of turbulent Taylor-Couette flow. J Fluid Mech 579:227–270

    MathSciNet  MATH  Google Scholar 

  • Bottin S, Dauchot O, Daviaud F, Manneville P (1998) Experimental evidence of streamwise vortices as finite amplitude solutions in transitional plane Couette flow. Phys Fluids 10(10):2597–2607

    Google Scholar 

  • Brenner M, Stone H (2000) Modern classical physics through the work of G I Taylor. Phys Today 5:30–35

    Google Scholar 

  • Carey CS, Schlender AB, Andereck CD (2007) Localized intermittent short-wavelength bursts in the high-radius ratio limit, of the Taylor-Couette system. Phys Rev E 75:016303

    Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamics and hydromagnetic stability. Dover, New York

    MATH  Google Scholar 

  • Chossat P, Iooss G (1994) The Couette-Taylor problem. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Coles D (1965) Transition in circular Couette flow. J Fluid Mech 21:385–425

    MATH  Google Scholar 

  • Couette MM (1890) Etudes sur le frottement de liquides. Ann Chim Phys 6 Ser 21:433

    Google Scholar 

  • Coughlin K, Marcus PS (1996) Turbulent Bursts in Couette-Taylor Flow. Phys Rev Lett 77(11):2214–2217

    Google Scholar 

  • Couliou M, Monchaux R (2015) Large-scale flows in transitional plane Couette flow: a key ingredient of the spot growth mechanism. Phys Fluids 27:034101

    Google Scholar 

  • Dauchot O, Daviaud F (1995) Finite-amplitude perturbation and spots growth mechanism in plane Couette flow. Phys Fluids 7:335–343

    Google Scholar 

  • Daviaud F, Hegseth J, Berge P (1992) Subcritical transition to turbulence in plane Couette flow. Phys Rev Lett 69:2511–2514

    Google Scholar 

  • Donnelly RJ (1991) Taylor-Couette flow: the early days. Phys Today 44:32–39

    Google Scholar 

  • Dou H-S (2004) Energy gradient theory of hydrodynamic instability. The third inter conf on nonlinear science. Singapore, 30 June-2 July, 2004. http://arxiv.org/abs/nlin.CD/0501049

  • Dou HS (2006) Mechanism of flow instability and transition to turbulence. Int J Non-Linear Mech 41(4):512–517

    MATH  Google Scholar 

  • Dou H-S (2011) Physics of flow instability and turbulent transition in shear flows. Inter J Phys Sci 6(6):1411–1425

    Google Scholar 

  • Dou H-S (2021) Singularity of Navier-Stokes equations leading to turbulence. Adv Appl Math Mech 13(3):527–553

    MathSciNet  MATH  Google Scholar 

  • Dou H-S, Khoo BC (2011) Investigation of turbulent transition in plane Couette flows using energy gradient method. Adv Appl Math Mech 3(2):165–180

    MathSciNet  Google Scholar 

  • Dou H-S, Khoo BC, Yeo KS (2007) Energy loss distribution in the plane Couette flow and the Taylor-Couette flow between concentric rotating cylinders. Inter J Therm Sci 46:262–275

    Article  Google Scholar 

  • Dou H-S, Khoo BC, Yeo KS (2008) Instability of Taylor-Couette flow between concentric rotating cylinders. Int J Therm Sci 47:1422–1435

    Google Scholar 

  • Dou H-S, Zhou CQ, Xu WQ, Niu L (2021) Singular transition to turbulence in Taylor-Couette flow. Submitted. https://www.researchgate.net/publication/358904121

  • Drazin PG, Reid WH (2004) Hydrodynamic stability, 2nd ed., Cambridge University Press, Cambridge

    Google Scholar 

  • Esser A, Grossmann S (1996) Analytic expression for Taylor-Couette stability boundary. Phys Fluids 8(7):1814–1819

    MATH  Google Scholar 

  • Prigent A, Dauchot O (2000) Barber pole turbulence in large aspect ratio Taylor-Couette flow. (1):11–4. https://arxiv.org/abs/cond-mat/0009241

  • Faisst H, Eckhardt B (2000) Transition from the Couette-Taylor system to the plane Couette system. Phys Rev E 61:7227–7230

    Google Scholar 

  • Fenstermacher PR, Swinney HL, Gollub JP (1979) Dynamical instabilities and the transition to chaotic Taylor vortex flow. J Fluid Mech 94:103–128

    Google Scholar 

  • Feynman RP (1964) Lecture notes in physics, vol 2. Addison-Wesley, Reading MA

    Google Scholar 

  • Froitzheim A, Ezeta R, Huisman SG, Merbold S, Sun C, Lohse D, Egbers C (2019) Statistics, plumes and azimuthally travelling waves in ultimate Taylor-Couette turbulent vortices. J Fluid Mech 876:733–765

    Google Scholar 

  • Gollub JP, Swinney HL (1975) Onset of turbulence in a rotating fluid. Phys Rev Lett 35:927–930

    Google Scholar 

  • Grossmann S, Lohse D, Sun C (2016) High Reynolds number Taylor-Couette turbulence. Annu Rev Fluid Mech 48:53–80

    MathSciNet  MATH  Google Scholar 

  • Hegseth JJ, Andereck CD, Hayot F, Pomeau Y (1989) Spiral turbulence and phase dynamics. Phys Rev Lett 62(3):257–260

    Google Scholar 

  • Hinko KA (2003) Transitions in the small gap limit of Taylor-Couette flow, The Ohio State University Physics summer institute, REU summer 2003; Advisor: Dr. Andereck, Department of Physics, The Ohio State University, C. D

    Google Scholar 

  • Ji H, Balbus SA (2013) Angular momentum transport in astrophysics and in the lab. Phys Today 66(8):27–33

    Google Scholar 

  • Ji H, Burin M, Schartman E, Goodman J (2006) Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444:343–346

    Google Scholar 

  • von karman T (1934) Some aspects of the turbulence problem. Proc 4th Inter Congr Appl Mech Cambridge England 54–91. Also Collected works vol 3 1956 Butterworths scientific publications pp 120–155

    Google Scholar 

  • Kitoh O, Umeki M (2008) Experimental study on large-scale streak structure in the core region of turbulent plane Couette flow. Phys Fluids 20(2):025107

    MATH  Google Scholar 

  • Komminaho J, Lundbladh A, Johansson AV (1996) Very large structures in plane turbulent Couette flow. J Fluid Mech 320:259–285

    MATH  Google Scholar 

  • Krueger ER, Gross A, DiPrima RC (1966) On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. J Fluid Mech 24:521–538

    Google Scholar 

  • Langford WF, Tagg R, Kostelich EJ, Swinney HL, Golubitsky M (1988) Primary instabilities and bicriticality in flow between counter-rotating cylinders. Phys Fluids 31(4):776–785

    Google Scholar 

  • Lathrop DP, Fineberg J, Swinney HL (1992) Transition to shear-driven turbulence in Couette-Taylor flow. Phys Rev A 46(10):6390–6405

    Google Scholar 

  • Lundbladh A, Johansson A (1991) Direct simulation of turbulent spots in plane Couette flow. J Fluid Mech 229:499–516

    MATH  Google Scholar 

  • Malerud S, Mölfy KJ, Goldburg WI (1995) Measurements of turbulent velocity fluctuations in a planar Couette cell. Phys Fluids 7:1949–1955

    Google Scholar 

  • Mallock A (1896) Experiments on fluid viscosity. Phil Trans Roy Soc A 187:41

    Google Scholar 

  • Meseguer A, Mellibovsky F, Avila M, Marques F (2009) Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow. Phys Rev E 80:046315

    Google Scholar 

  • Ostilla-Mónico R, Verzicco R, Lohse D (2016) Turbulent Taylor–Couette flow with stationary inner cylinder. J Fluid Mech 799:R1

    Google Scholar 

  • Papavassiliou DV, Hanratty TJ (1997) Interpretation of large-scale structures observed in a turbulent plane Couette flow. Int J Heat Fluid Flow 18(1):55–69

    Google Scholar 

  • Pirrò D, Quadrio M (2008) Direct numerical simulation of turbulent Taylor-Couette flow. Eur J Mech B/fluids 27:552–566

    MATH  Google Scholar 

  • Prigent A, Grégoire G, Chaté H, Dauchot O, van Saarloos V (2002) Large-scale finite-wavelength modulation within turbulent shear flows. Phys Rev Lett 89(1):014501

    Google Scholar 

  • Rayleigh L (1917) On the dynamics of revolving fluids. Proc Roy Soc London A 93(648):148–154

    MATH  Google Scholar 

  • Rist U, Fasel H (1995) Direct numerical simulation of controlled transition in a flat-plate boundary layer. J Mech Fluid 298:211–248

    MATH  Google Scholar 

  • Snyder HA (1968) Stability of rotating Couette flow. II. Comparison with numerical results. Phys Fluids 11:1599–1605

    Google Scholar 

  • Tagg R (1994) The Couette-Taylor problem. Nonlinear Sci Today 4:2–25

    MATH  Google Scholar 

  • Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Philo Trans Roy Soc A 223:289–343

    MATH  Google Scholar 

  • Tillmark N, Alfredsson PH (1992) Experiments on transition in plane Couette flow. J Fluid Mech 235:89–102

    Google Scholar 

  • Tsukahara T, Kawamura H, Shingai K (2006) DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. J Turbul 7:N19

    Google Scholar 

  • Tuckerman LS, Barkley D (2011) Patterns and dynamics in transitional plane Couette flow. Phys Fluids 23:041301

    MATH  Google Scholar 

  • Wereley ST, Lueptow RM (1998) Spatio-temporal character of non-wavy and wavy Taylor-Couette flow. J Fluid Mech 364:59–80

    MathSciNet  MATH  Google Scholar 

  • Wereley ST, Lueptow RM (1999) Velocity field for Taylor-Couette flow with an axial flow. Phys Fluids 11(12):3637–3649

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Shu Dou .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dou, HS. (2022). Stability of Taylor-Couette Flow Between Concentric Rotating Cylinders. In: Origin of Turbulence. Springer, Singapore. https://doi.org/10.1007/978-981-19-0087-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0087-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0086-0

  • Online ISBN: 978-981-19-0087-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics