Skip to main content

Use of Alternative Components in Cost-Effective Media for Mass Production of Clonal Plants

  • Chapter
  • First Online:
Commercial Scale Tissue Culture for Horticulture and Plantation Crops

Abstract

The demand for economically important plants, particularly medicinal and horticultural crops has increased drastically. On a large scale, the availability of propagules for the cultivation of these crops remains a challenge since plant parts such as seeds, rhizomes, and corms needed for propagation are often the economically important parts in high demand. For decades, tissue culture techniques have been used to bridge the supply versus demand gap for both medicinal plants and horticultural crops. However, mass propagation of plants in vitro is hampered by the costs associated with such in vitro techniques. In tissue culture protocols, the cost of prepared growing media, amongst other inputs, can be a limitation. Murashige and Skoog (MS), Linsmaier and Skoog (LS), Gamborg (B5), Lloyd and McCown (LM) Woody Plant, Driver and Kuniyuki Woody (DKW), BDS, BABI as well as Nitsch and Nitsch (NN) media have been used in tissue culture as basic media for decades. Main components of these media include micro- and macronutrients, vitamins, amino acids or nitrogen supplements, source (s) of carbon, and undefined organic supplements in some cases, which are solidified by gelling or solidifying agents. To attain cost-effective protocols for mass propagation, media containing different low-cost components can be used as alternatives. However, mass propagation protocols are often species-specific or vary amongst species due to differences in nutrient requirements and plant physiology. Optimization of components is imperative for achieving low-cost high multiplication and survival rates during acclimatization. This chapter aims to explore low-cost media for mass propagation of clonal plants to sustain the agricultural industry and counteract food insecurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, A., R. Sanayaima, R. Tandon, and R.K. Tyagi. 2010. Cost-effective in vitro conservation of banana using alternatives of gelling agent (isabgol) and carbon source (market sugar). Acta Physiologiae Plantarum 32: 703–711.

    Article  Google Scholar 

  • Alina, M.R., M.A. Ramírez-Mosqueda, F.O. Mosqueda, P.M. Rivas, and J. Bello-Bello. 2020. Influence of Vitrofural® on sugarcane micropropagation using temporary immersion system. Plant Cell, Tissue and Organ Culture 141: 447–453.

    Article  CAS  Google Scholar 

  • Ayenew, B., A. Mengesha, T. Tadesse, and E. GebreMariam. 2012. Ensete ventricosum (Welw.) Cheesman: A cheap and alternative gelling agent for pineapple (Ananas comosus var. smooth cayenne) in vitro propagation. Journal of Microbiology, Biotechnology and Food Sciences 2021: 640–652.

    Google Scholar 

  • Babbar, S., and N. Jain. 1998. Isubgol as an alternative gelling agent in plant tissue culture media. Plant Cell Reports 17: 318–322.

    Article  CAS  PubMed  Google Scholar 

  • Babbar, S., R. Jain, and N. Walia. 2005. Guar gum as a gelling agent for plant tissue culture media. In Vitro Cellular & Developmental Biology. Plant 41: 258–261.

    Article  Google Scholar 

  • Chandra, S., R. Bandopadhyay, V. Kumar, and R. Chandra. 2010. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters 32: 1199–1205.

    Article  CAS  PubMed  Google Scholar 

  • Chawla, A., A. Kumar, A. Warghat, S. Singh, S. Bhushan, S.R. Kumar, A. Bhattacharya, and S. Kumar. 2020. Approaches for conservation and improvement of Himalayan plant genetic resources. In Advancement in crop improvement techniques, ed. N. Tuteja, R. Tuteja, N. Passricha, and S.K. Saifi. Woodhead Publishing.

    Google Scholar 

  • Conger, B.V. 2018. Cloning agricultural plants via in vitro techniques. CRC Press.

    Book  Google Scholar 

  • Deb, C.R., and A. Pongener. 2010. Search of alternative substratum for agar in plant tissue culture. Current Science 98: 99–102.

    Google Scholar 

  • Etienne, H. 2005. Somatic embryogenesis protocol: Coffee (Coffea arabica L. and C. canephora P.). In Protocol for somatic embryogenesis in woody plants. Springer.

    Google Scholar 

  • Etienne, H., B. Bertrand, F. Georget, M. Lartaud, F. Montes, E. Dechamp, J.-L. Verdeil, and D. Barry-Etienne. 2013. Development of coffee somatic and zygotic embryos to plants differs in the morphological, histochemical and hydration aspects. Tree Physiology 33: 640–653.

    Article  CAS  PubMed  Google Scholar 

  • George, E.F., and G.-J. de Klerk. 2008. The components of plant tissue culture media I: Macro- and micro-nutrients. In Plant propagation by tissue culture, ed. E.F. George, M.A. Hall, and G.-J. De Klerk, 3rd ed. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • George, E.F., M.A. Hall, and G.-J. De Klerk. 2008. Micropropagation: Uses and methods. In Plant propagation by tissue culture, ed. E.F. George, M.A. Hall, and G.-J. De Klerk. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Georget, F., P. Courtel, E.M. Garcia, M. Hidalgo, E. Alpizar, J.-C. Breitler, B. Bertrand, and H. Etienne. 2017. Somatic embryogenesis-derived coffee plantlets can be efficiently propagated by horticultural rooted mini-cuttings: A boost for somatic embryogenesis. Scientia Horticulturae 216: 177–185.

    Article  CAS  Google Scholar 

  • Gitonga, N., O. Ombori, K. Murithi, and M. Ngugi. 2010. Low technology tissue culture materials for initiation and multiplication of banana plants. African Crop Science Journal 18: 243–251.

    Google Scholar 

  • Gonçalves, S., and A. Romano. 2005. Locust bean gum (LBG) as a gelling agent for plant tissue culture media. Scientia Horticulturae 106: 129–134.

    Article  Google Scholar 

  • Goodger, J.Q., and I.E. Woodrow. 2010. The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea. Tree Physiology 30: 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Greenway, M.B., I.C. Phillips, M.N. Lloyd, J.F. Hubstenberger, and G.C. Phillips. 2012. A nutrient medium for diverse applications and tissue growth of plant species in vitro. In Vitro Cellular & Developmental Biology. Plant 48: 403–410.

    Article  CAS  Google Scholar 

  • Henderson, W., and A. Kinnersley. 1988. Corn starch as an alternative gelling agent for plant tissue culture. Plant Cell, Tissue and Organ Culture 15: 17–22.

    Article  Google Scholar 

  • Idowu, P., D. Ibitoye, and O. Ademoyegun. 2009. Tissue culture as a plant production technique for horticultural crops. African Journal of Biotechnology 8: 3782–3788.

    Google Scholar 

  • Jain, N., and S.B. Babbar. 2002. Gum katira—A cheap gelling agent for plant tissue culture media. Plant Cell, Tissue and Organ Culture 71: 223–229.

    Article  CAS  Google Scholar 

  • Kaur, A., and J.S. Sandhu. 2015. High throughput in vitro micropropagation of sugarcane (Saccharum officinarum L.) from spindle leaf roll segments: Cost analysis for agri-business industry. Plant Cell, Tissue and Organ Culture 120: 339–350.

    Article  CAS  Google Scholar 

  • Kaur, R., and S.J.J.C.R. Arora. 2015. Alkaloids-important therapeutic secondary metabolites of plant origin. Journal of Critical Reviews 2: 1–8.

    Google Scholar 

  • Kaur, R., H. Gautam, and D.A. Sharma. 2003. Low cost strategy for micropropagation of strawberry (Fragaria× ananassa Duch.) cv. Chandler. Acta Horticulturae 696: 129–133.

    Google Scholar 

  • Khan, M.R., and M.M. Khan. 2010. Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Australian Journal of Basic and Applied Sciences 4: 1036–1046.

    CAS  Google Scholar 

  • Kodym, A., and F.J. Zapata-Arias. 2001. Low-cost alternatives for the micropropagation of banana. Plant Cell, Tissue and Organ Culture 66: 67–71.

    Article  CAS  Google Scholar 

  • Kohlenbach, H., and W. Wernicke. 1978. Investigations on the inhibitory effect of agar and the function of active carbon in anther culture. Zeitschrift für Pflanzenphysiologie 86: 463–472.

    Article  CAS  Google Scholar 

  • Mehta, M., R. Ram, and A. Bhattacharya. 2014. A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks. Indian Journal of Experimental Biology 52: 748–754.

    PubMed  Google Scholar 

  • Mohamed, M., A. Alsadon, and M. Al Mohaidib. 2010. Corn and potato starch as an agar alternative for Solanum tuberosum micropropagation. African Journal of Biotechnology 9: 012–016.

    CAS  Google Scholar 

  • Moyo, M., M. Bairu, S. Amoo, and J. Van Staden. 2011. Plant biotechnology in South Africa: Micropropagation research endeavours, prospects and challenges. South African Journal of Botany 77: 996–1011.

    Article  Google Scholar 

  • Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

    Article  CAS  Google Scholar 

  • Nadirah, M., A. Awal, Y. Azma, and A. Sulaiman. 2019. POME: An alternative nutrient source for bio-organic plant tissue culture media. IOP Conference Series: Earth and Environmental Science 327: 012029.

    Article  Google Scholar 

  • Naik, P., and D. Sarkar. 2001. Sago: An alternative cheap gelling agent for potato in vitro culture. Biologia Plantarum 44: 293–296.

    Article  CAS  Google Scholar 

  • Ngomuo, M., E. Mneney, and P.A. Ndakidemi. 2014. The in vitro propagation techniques for producing banana using shoot tip cultures. American Journal of Plant Sciences 5: 1614–1622.

    Article  CAS  Google Scholar 

  • Nkere, C., and E. Mbanaso. 2009. In vitro culture of cassava (Manihot esculenta Crantz): Assessment of cassava starch from different varieties as gelling agent in culture medium. International Journal of Applied Agricultural Sciences 4: 261–266.

    Google Scholar 

  • Ogero, K.O., G.N. Mburugu, M. Mwangi, M.M. Ngugi, and O. Ombori. 2012. Low cost tissue culture technology in the regeneration of sweet potato (Ipomoea batatas (L) Lam). Journal of Biological Research 2: 51–58.

    CAS  Google Scholar 

  • Pasqualetto, P.-L., R. Zimmerman, and I. Fordham. 1988. The influence of cation and gelling agent concentrations on vitrification of apple cultivars in vitro. Plant Cell, Tissue and Organ Culture 14: 31–40.

    Article  CAS  Google Scholar 

  • Phillips, G.C., and M. Garda. 2019. Plant tissue culture media and practices: An overview. In Vitro Cellular & Developmental Biology. Plant 55: 242–257.

    Article  Google Scholar 

  • Prabhuling, G., A. Mastiholi, and M. Kerutagi. 2013. Cheaper water sources for micropropagation of banana (Musa acuminata) cv. ‘Grande Naine’. Asian Journal of Horticulture 8: 641–644.

    Google Scholar 

  • Previati, A., and C. Benelli. 2009. Micropropagation of vegetables: Present situation and prospects. Italus Hortus 16: 37–43.

    Google Scholar 

  • Purohit, S.D., J. Teixeira da Silva, and N. Habibi. 2011. Current approaches for cheaper and better micropropagation technologies. International Journal of Plant Developmental Biology 5: 1–36.

    Google Scholar 

  • Ranaweera, K., M. Gunasekara, and J. Eeswara. 2013. Ex vitro rooting: A low cost micropropagation technique for tea (Camellia sinensis (L.) O. Kuntz) hybrids. Scientia Horticulturae 155: 8–14.

    Article  CAS  Google Scholar 

  • Ranaweera, K., M. Gunasekare, and J. Eeswara. 2012. Integration of low cost micropropagation technique to accelerate the breeding program of tea (Camellia sinensis LO Kuntze). International Journal of Tea Science 77: 11–21.

    Google Scholar 

  • Saad, A.I., and A.M. Elshahed. 2012. Plant tissue culture media. In Recent advances in plant in vitro culture, ed. A. Leva and L.M.R. Rinaldi, 29–40. Croatia: InTech.

    Google Scholar 

  • Saglam, S., and C.Y. Cifici. 2010. Effects of agar and isubgol on adventitous shoot regeneration of woad (Isatis tinctoria). International Journal of Agriculture and Biology 12: 281–285.

    CAS  Google Scholar 

  • Sahu, J., and R.K. Sahu. 2013. A review on low cost methods for in vitro micropropagation of plant through tissue culture technique. International Journal of Pharma and Bio Sciences: 38–41.

    Google Scholar 

  • Santana, M., G. Romay, J. Matehus, J. Villardón, and J.R. Demey. 2009. Simple and low-cost strategy for micropropagation of cassava (Manihot esculenta Crantz). African Journal of Biotechnology 8: 3789–3797.

    Google Scholar 

  • Saraswathi, M.S., S. Uma, G. Kannan, M. Selvasumathi, M. Mustaffa, and S. Backiyarani. 2016. Cost-effective tissue culture media for large-scale propagation of three commercial banana (Musa spp.) varieties. The Journal of Horticultural Science and Biotechnology 91: 23–29.

    Article  Google Scholar 

  • Shah, A.H., S.H. Shah, Z.A. Swati, and Z. Hussain. 2003. Cost effective micropropagation technology for potatoes. Pakistan Journal of Biological Sciences 6: 336–340.

    Article  Google Scholar 

  • Shahzad, A., S. Parveen, S. Sharma, A. Shaheen, T. Saeed, V. Yadav, R. Akhtar, Z. Ahmad, and A. Upadhyay. 2017. Plant tissue culture: Applications in plant improvement and conservation. In Plant biotechnology: Principles and applications, ed. M.Z. Abdin, U. Kiran, Kamaluddin, and A. Ali. Singapore: Springer.

    Google Scholar 

  • Sharifi, A., N. Moshtaghi, and A. Bagheri. 2010. Agar alternatives for micropropagation of African violet (Saintpaulia ionantha). African Journal of Biotechnology 9: 9199–9203.

    Google Scholar 

  • Smykalova, I., M. Ortova, H. Lipavska, and J. Patzak. 2001. Efficient in vitro micropropagation and regeneration of Humulus lupulus. Biologia Plantarum 44: 7–12.

    Article  CAS  Google Scholar 

  • Sunandakumari, C., K. Martin, M. Chithra, S. Sini, and P. Madhusoodanan. 2004. Rapid axillary bud proliferation and ex vitro rooting of herbal spice, Mentha piperita L. Indian Journal of Biotechnology: 108–112.

    Google Scholar 

  • Ubalua, A.O., C.I. Ihezie, and A.I. Ikpeama. 2014. Cassava Starch: Exploring its potential as an alternative gelling agent for in vitro regeneration and multiplication of sweet potato plantlets. American-Eurasian Journal of Agricultural & Environmental Sciences 14: 748–756.

    Google Scholar 

  • Vorpsi, V., P. Rama, and B. Hodaj. 2012. The use of corn starch on in vitro propagation of plum. Albanian Journal of Agricultural Sciences 11: 169–172.

    Google Scholar 

  • Zimmerman, R.H., S. Bhardwaj, and I.M. Fordham. 1995. Use of starch-gelled medium for tissue culture of some fruit crops. Plant Cell, Tissue and Organ Culture 43: 207–213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen O. Amoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madzikane, O., Gebashe, F.C., Amoo, S.O. (2022). Use of Alternative Components in Cost-Effective Media for Mass Production of Clonal Plants. In: Gupta, S., Chaturvedi, P. (eds) Commercial Scale Tissue Culture for Horticulture and Plantation Crops . Springer, Singapore. https://doi.org/10.1007/978-981-19-0055-6_3

Download citation

Publish with us

Policies and ethics