Skip to main content

A Novel Architecture for Binary Code to Gray Code Converter Using Quantum Cellular Automata

  • Conference paper
  • First Online:
Edge Analytics

Abstract

In CMOS, the channel length is sinking day by day which raises a lot of questions about its future. Quantum dot computation is an alternative solution to the CMOS technology, which has the strength to increase the speed of computations and reduce the power while performing those computations as well as it reduces the area when compared to CMOS technology. To perform computations using quantum, we generate arithmetic circuits where code converters play a significant role. In this paper, we are discussing 2-, 3-, and 4-bit binary to gray code converters that are designed with a minimum number of qubits using 0.0251, 0.0382, 0.06 \(\upmu \text {m}^2\) area respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore GE (1965) Cramming more components onto integrated circuits, Reprinted from Electronics 38(8). EEE SSCS NEWSLETTER, Sept 2006.https://doi.org/10.1109/N-SSC.2006.4785860

  2. Ali Razavieh PZ, Nowak EJ (2019) Challenges and limitations of CMOS Scaling for FinFET and beyond architectures. IEEE Trans Nanotechnol. https://doi.org/10.1109/TNANO.2019.2942456

  3. Kumar O, Kaur M (2010) Single electron transistor: applications & problems. Int J VLSI Design Commun Syst 1(4). https://doi.org/10.5121/vlsic.2010.1403

  4. Pitroda J, Jethwa B, Dave SK (2016) A critical review on carbon nanotubes. Int J Constr Res Civil Eng (IJCRCE) 2(5). https://doi.org/10.20431/2454-8693.0205007

  5. Bibin Lawrence R, Jency Rubia J (2015) Review of Fin FET technology and circuit design challenges. Int J Eng Res Appl 5(12). ISSN: 2248-9622

    Google Scholar 

  6. Vecchia MD, Ravyts S, Van den Broeck G, Driesen J (2019) Gallium-nitride semiconductor technology and its practical design challenges in power electronics applications: an overview. Energies 12. https://doi.org/10.3390/en12142663

  7. Thomsen A, Brooke MA (1994) Low control voltage programming of floating gate MOSFETs and applications. IEEE Trans Circ Syst I Fundamental Theory Appl 41(6)

    Google Scholar 

  8. Fukui H (1979) Channel current limitations in GaAs MESFETs. Solid-State Electron 22(5). https://doi.org/10.1016/0038-1101(79)90157-6

  9. Singh RK (2011) Silicon on insulator technology review. Int J Eng Sci Emerg Technol 1(1). ISSN: 2231-6604

    Google Scholar 

  10. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3)

    Google Scholar 

  11. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4)

    Google Scholar 

  12. Bahar AN, Waheed S, Hossain N (2015) A new approach of presenting reversible logic gate in nanoscale. SpringerPlus 4

    Google Scholar 

  13. Bahar AN, Waheed S, Habib MA (2015) An efficient layout design of Fredkin gate in quantum-dot cellular automata (QCA). Duzce Universite Bilimve Technol Dergisi 3

    Google Scholar 

  14. Islam, MS, Abdullah-Al-Shafi M, Bahar AN (2016) A new approach of presenting universal reversible gate in nanoscale. Int J Comput Appl 134

    Google Scholar 

  15. Shamsabadi AS, Ghahfarokhi BS, Zamanifar K, Movahedinia N, Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J Syst Archit 55

    Google Scholar 

  16. Sheikhfaal S, Navi K, Angizi S, Navin AH (2015) Designing high speed sequential circuits by quantum-dot cellular automata: memory cell and counter study. Quantum Matter 4

    Google Scholar 

  17. Yang X, Cai L, Zhao X, Zhang N (2010) Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron J 41

    Google Scholar 

  18. Xiao L, Chen X, Ying S (2012) Design of dual-edge triggered flipflops based on quantum-dot cellular automata. J Zhejiang Univ Sci C 13

    Google Scholar 

  19. Beigh MR, Mustafa M, Ahmad F (2013) Performance evaluation of efficient XOR structures in Quantum-dot cellular automata. Circ Syst. 04

    Google Scholar 

  20. Hashemi S, Farazkish R, Navi K (2013) New quantum-dot cellular automata cell arrangements. J Comut Theor Nanosci 10

    Google Scholar 

  21. Chabi AM, Sayedsalehi S, Angizi S, Navi K (2014) Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic compatible designing approach. Int School Res Notices. https://doi.org/10.1155/2014/463967

    Article  Google Scholar 

  22. Angizi S, Alkaldy E, Bagherzadeh N, Navi K (2014) Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata. J Low Power Electron 10. https://doi.org/10.1166/jolpe.2014.1320

  23. Azghadi M, Kavehei O, Navi K (2007) A novel design for quantum-dot cellular automata cells and full adders. J Appl Sci 7

    Google Scholar 

  24. Cho H, Swartzlander Jr EE (2009) Adder and Multiplier design in quantum dot cellular automata. IEEE Trans Comput 58

    Google Scholar 

  25. Cho H, Swartzlander Jr. EE (2009) Adder and multiplier design in quantum-dot cellular automata. IEEE Trans Comput 58

    Google Scholar 

  26. Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: Third IEEE conference on nanotechnology, vol 2

    Google Scholar 

  27. Vetteth A, Walus K, Dimitrov VS, Jullien GA (2002) Quantumdot cellular automata carry-look-ahead adder and barrel shifter. In: Proceedings of the IEEE emerging telecommunications technologies conference

    Google Scholar 

  28. Kim K, Wu K, Karri R (2007) The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput AidedDes Integr Circ Syst 26

    Google Scholar 

  29. Zhang R, Walus K, Wang W, Jullien GA (2005) Performance comparison of quantum-dot cellular automata adders. In: IEEE International symposium on circuits and systems 3

    Google Scholar 

  30. Hanninen I, Takala J (2008) Binary adders on quantum dot cellular automata. J Sign Process Syst Sign Image Video Technol 58

    Google Scholar 

  31. Hänninen I, Takala J (2010) Binary adders on quantum-dot cellular automata. J Signal Process Syst 58(1)

    Google Scholar 

  32. Vankamamidi V, Ottavi M, Lombardi F (2008) A serial memory by quantum-dot cellularautomata (QCA). IEEE Trans Comput 57

    Google Scholar 

  33. Swathi M, Gnaneshwara Chary U (2018) Design of parity generator and parity checker using quantum dot automata. In J Pure Appl Math 118(24)

    Google Scholar 

  34. Cho H, Swartzlander E (2009) Adder and multiplier design in quantum-dot cellular automata. IEEE Trans Computers 58(6)

    Google Scholar 

  35. Automata (QCA) shift register and analysis of errors. IEEE Trans Electron Devices 50(9) (2003)

    Google Scholar 

  36. Sheikhfaal S, Angizi S, Sarmadi S, Hossein Moaiyeri M, Sayedsalehi S (2015) Designing efficient QCA logical circuits with power dissipation analysis. Microelectronics J 46. https://doi.org/10.1016/j.mejo.2015.03.016

  37. Singh G, Sarin RK, Raj B (2016) A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J Comput Electron 15. https://doi.org/10.1007/s10825-016-0804-7

  38. Lent CS, Tougaw PD, Porod WD, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1)

    Google Scholar 

  39. Zhang R, Walus K, Wang W, Jullien GA (2008) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4)

    Google Scholar 

  40. Tougaw PD, Lent CS, Porod W (1993) Bistable saturation in coupled quantum-dot cells, J Applied Phys 74(5)

    Google Scholar 

  41. Cho H, Swartzlander EE (2007) Adder designs and analyses for quantum-dot cellular automata. Nanotechnology IEEE Trans 6(3)

    Google Scholar 

  42. Bahar AN, Waheed S (2016) Design and implementation of an efficient single layer five input majority voter gate in quantum dot cellular automata. SpringerPlus 5. https://doi.org/10.1186/s40064-016-2220-7

  43. Islam S, Farzana S, Bahar SAN (2014) Area efficient layout design of multiply complements logic (MCL) gate using QCA technology. Global J Res Eng 14

    Google Scholar 

  44. Abdullah-Al-Shafi M, Shifatul M, Bahar AN (2015) A review on reversible logic gates and its QCA implementation. Int J Comput Appl 128. https://doi.org/10.5120/jca2015906434

  45. Bahar AN, Waheed S, Habib MA (2014) A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA). In: International conference on electrical engineering and information communication technology (ICEEICT). https://doi.org/10.1109/ICEEICT.2014.6919121

  46. Sarker A, Bahar AN, Biswas PK, Morshed M (2014) A novel presentation of Peres gate (PG) in quantum-dot cellular automata (QCA). Eur Sci J 10

    Google Scholar 

  47. Shifatul Islam Md, Abdullah-Al-Shafi Md, Bahar AN (2015) Implementation of binary to gray code converters in quantum dot cellular automata. J Today’s Ideas – Tomorrow’s Technol 3(2). https://doi.org/10.15415/jotitt.2015.32010

  48. Abdullah-Al-Shafi Md, Bahar AN (2016) Novel binary to gray code converters in QCA with power dissipation analysis. Int J Multimedia Ubiquitous Eng 11(8)

    Google Scholar 

  49. Bhowmik D, Saha AK, Dutta P (2016) A novel design and implementation of binary to gray code converters up to 4-bit by quantum dot cellular automata. Int J Control Theory Appl 9(41)

    Google Scholar 

  50. Chakraborty R, Banerjee A, Mahato DK, Choudhuri S, Mandal NK (2018) Design of binary to gray code converter for error correction in communication systems using layered quantum dot cellular automata. In: 2nd International conference on electronics, materials engineering & nano-technology. IEEE

    Google Scholar 

  51. Guleria N (2017) Binary to gray code converter implementation using QCA. IEEE

    Google Scholar 

  52. Schlesinger TE (2001) Gallium arsenide. Science and Technology, ScienceDirect, Encyclopedia of Materials

    Google Scholar 

  53. Azghadi MR, Kavehei O, Navi K (2007) A novel design for quantum-dot cellular automata cells and full adders J Appl Sci 7(22)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swathi, M., Rudra, B. (2022). A Novel Architecture for Binary Code to Gray Code Converter Using Quantum Cellular Automata. In: Patgiri, R., Bandyopadhyay, S., Borah, M.D., Emilia Balas, V. (eds) Edge Analytics. Lecture Notes in Electrical Engineering, vol 869. Springer, Singapore. https://doi.org/10.1007/978-981-19-0019-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0019-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0018-1

  • Online ISBN: 978-981-19-0019-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics