Skip to main content

Double Arrowhead Auxetic Structures: A Numerical Investigation Under Compressive Loading

  • Conference paper
  • First Online:
Recent Advances in Manufacturing Modelling and Optimization

Abstract

A new class of metamaterials known as auxetic/negative Poisson’s ratio (NPR) structures has wide applications in fields where high energy absorption and stiffness are required. The present work is focused on numerical investigation of double arrowhead (DAH) auxetic structures of polylactic acid (PLA) material under compressive loading. Deformation mechanism of DAH auxetic structures is studied for different configurations by varying geometrical parameters, namely first angle (θ1), second angle (θ2) and half-length (l). Nonlinear finite element models are developed for compressive loading and responses namely strength, modulus and specific energy absorption (SEA) are measured. It is found that all geometrical parameters significantly influence the responses of DAH auxetic structures. With increase in first angle, strength and modulus increase while SEA decreases. Responses increase with rise in second angle and reduction in half-length of unit cell of DAH auxetic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  2. Mardling P, Alderson A, Jordan-Mahy N, Le Maitre CL (2020) The use of auxetic materials in tissue engineering. Biomater Sci 8(8):2074–2083

    Article  Google Scholar 

  3. Alderson A, Alderson KL (2007) Auxetic materials. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):565–575. https://doi.org/10.1243/09544100JAERO185

    Article  Google Scholar 

  4. Evans KE (1991) Molecular. 353(September):10065

    Google Scholar 

  5. Kelkar PU, Kim HS, Cho KH, Kwak JY, Kang CY, Song HC (2020) Cellular auxetic structures for mechanical metamaterials: a review. Sensors (Switzerland) 20(11):1–26. https://doi.org/10.3390/s20113132

    Article  Google Scholar 

  6. Mir M, Ali MN, Sami J, Ansari U (2014) Review of mechanics and applications of auxetic structures. In: Advances in materials science and engineering, vol 2014. http://doi.org/10.1155/2014/753496

  7. Ma P (2019) A review on auxetic textile structures, their mechanism and properties. J Text Sci Fashion Technol 2(1):1–10. http://doi.org/10.33552/jtsft.2019.02.000526

  8. Keskar NR, Chelikowsky JR (1992) Negative Poisson ratios in crystalline SiO2 from first-principles calculations. Nature 358:222–224

    Article  Google Scholar 

  9. Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7(9):5111–5129. https://doi.org/10.1039/c6ra27333e

    Article  Google Scholar 

  10. Zhang J, Lu G, You Z (2020) Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review. Compos Part B Eng 201(July):108340. http://doi.org/10.1016/j.compositesb.2020.108340

  11. Scarpa F, Panayiotou P, Tomlinson G (2000) Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J Strain Anal Eng Des 35(5):383–388. https://doi.org/10.1243/0309324001514152

    Article  Google Scholar 

  12. Shepherd T, Winwood K, Venkatraman P, Alderson A, Allen T (2020) Validation of a finite element modeling process for auxetic structures under impact. Phys Status Solidi (B) Basic Res 257(10):1–14. http://doi.org/10.1002/pssb.201900197

  13. Alomarah A, Ruan D, Masood S (2018) Tensile properties of an auxetic structure with re-entrant and chiral features—a finite element study. Int J Adv Manuf Technol 99(9):22425–2440

    Google Scholar 

  14. Xiao D, Dong Z, Li Y, Wu W, Fang D (2019) Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis. Mater Sci Eng A 758(April):163–171. https://doi.org/10.1016/j.msea.2019.04.116

    Article  Google Scholar 

  15. Qi C, Jiang F, Yu C, Yang S (2019) In-plane crushing response of tetra-chiral honeycombs. Int J Impact Eng 130(April):247–265. https://doi.org/10.1016/j.ijimpeng.2019.04.019

    Article  Google Scholar 

  16. Vyavahare S, Kumar S (2020) Re-entrant auxetic structures fabricated by fused deposition modeling: an experimental study of influence of process parameters under compressive loading. Polym Eng Sci 60(12):3183–3196. https://doi.org/10.1002/pen.25546

    Article  Google Scholar 

  17. Vyavahare S, Kumar S (2021) Numerical and experimental investigation of FDM fabricated re-entrant auxetic structures of ABS and PLA materials under compressive loading. Rapid Prototyping J. https://doi.org/10.1108/RPJ-10-2019-0271

    Article  Google Scholar 

  18. Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19(17):1563–1565. https://doi.org/10.1023/A:1006781224002

    Article  Google Scholar 

  19. Grima JN, Farrugia PS, Gatt R, Attard D (2008) On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi (B) Basic Res 245(3):521–529. http://doi.org/10.1002/pssb.200777705

  20. Larsen UD, Sigmund O, Bouwstra S (1997) Design and fabrication of compliant micro mechanisms and structures with negative Poisson’s ratio. Microelectromech Syst 6(2):99–106

    Article  Google Scholar 

  21. Qiao J, Chen CQ (2015) Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs. J Appl Mech Trans ASME 82(5):1–9. https://doi.org/10.1115/1.4030007

    Article  Google Scholar 

  22. Wang Y, Wang L, Ma ZD, Wang T (2017) Finite element analysis of a jounce bumper with negative Poisson’s ratio structure. Proc Inst Mech Eng C J Mech Eng Sci 231(23):4374–4387. https://doi.org/10.1177/0954406216665415

    Article  Google Scholar 

  23. Gao Q, Wang L, Zhou Z, Ma ZD, Wang C, Wang Y (2018) Theoretical, numerical, and experimental analysis of three-dimensional double-V honeycomb. Mater Des 139:380–391

    Article  Google Scholar 

  24. Gao Q, Ge C, Zhuang W, Wang L, Ma Z (2019) Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading. Mater Des 161:22–34. https://doi.org/10.1016/j.matdes.2018.11.013

    Article  Google Scholar 

  25. Gao Q, Liao WH, Wang L (2020) On the low-velocity impact responses of auxetic double arrowed honeycomb. Aerosp Sci Technol 98:105698

    Google Scholar 

  26. Zhao X, Gao Q, Wang L, Yu Q, Ma ZD (2018) Dynamic crushing of double-arrowed auxetic structure under impact loading. 160:527–537. https://doi.org/10.1016/j.matdes.2018.09.041

  27. Wang XT, Wang B, Wen ZH, Ma L (2018) Fabrication and mechanical properties of CFRP composite three-dimensional double arrowhead auxetic structures. Compos Sci Technol 164(May):92–102. https://doi.org/10.1016/j.compscitech.2018.05.014

    Article  Google Scholar 

  28. Standard test method for flatwise compressive properties of sandwich cores 1 (2003). Current i:2–4. http://doi.org/10.1520/C0365

  29. Raeisi S, Tapkir P, Ansari F, Tovar A (2019) Design of a hybrid honeycomb unit cell with enhanced in-plane mechanical properties. SAE technical paper 2019-01-0710. http://doi.org/10.4271/2019-01-0710

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Vyavahare, S., Bogala, H. (2022). Double Arrowhead Auxetic Structures: A Numerical Investigation Under Compressive Loading. In: Kumar, S., Ramkumar, J., Kyratsis, P. (eds) Recent Advances in Manufacturing Modelling and Optimization. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-9952-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9952-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9951-1

  • Online ISBN: 978-981-16-9952-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics