Skip to main content

Multi-source Microgrid Frequency Stability Control Using Learning-Based Technology

  • Chapter
  • First Online:
Advances in Control Techniques for Smart Grid Applications
  • 415 Accesses

Abstract

Due to stochastic power generations and uncertainties, the high penetration rate of renewable energy makes frequency control very difficult. Therefore, for the photovoltaic (PV)-integrated multi-source microgrid, the load frequency control (LFC) problem is investigated. A learning-based frequency control strategy is developed including thermal controller, hydro controller, and auxiliary power controller when the power mismatches occur. The proportion-integral (PI) controller are used for thermal and hydro generation, and auxiliary power controller is designed based on Adaptive dynamic programming (ADP) to improve the adaptability. With the maximal PV power, the auxiliary power controller regulates the PV power to realize the frequency regulation or to be stored by charging electric vehicles (EVs). For the studied benchmark microgrid, several numerical cases are applied to verify the proposed control strategy, which demonstrates the superiority for stabilizing the frequency and fully using solar energy. Further, a model-based intelligent frequency control strategy is designed to adjust the power outputs of micro-turbine and energy storage system (ESS) in the expansion and prospect, which is no longer an auxiliary control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

R s :

Series resistance (Ω)

R sh :

Parallel resistance (Ω)

I ph :

Current source (A)

R :

External resistance (Ω)

I ph :

Current of PV module (A)

I pv :

Output current (A)

U pv :

Output voltage (V)

I d :

Reverse saturation current of diode (A)

K :

Boltzmann constant

T :

Temperature (°C)

q :

Electronic charge of an electron

A :

Diode ideality factor

U oc :

Open-circuit voltage (V)

U m :

MPP output voltage (V)

I m :

MPP output current (A)

I sc :

Short-circuit current (A)

\(P_{{\text{pv}}}^*\) :

Maximum power of PV module (W)

δ1, δ2, δ3:

Distribution coefficients

u t :

Thermal control signal

u h :

Hydro control signal

u pv :

PV control signal

u e :

EV control signal

Δf :

Frequency deviation (Hz)

ΔP d :

Power mismatch from load change (p.u.)

ΔP pv :

Power mismatch from PV power generation (p.u.)

ΔP e :

Output power change of EV aggregator (p.u.)

ΔP h :

Output power change of hydro generation (p.u.)

ΔP t :

Output power change of thermal generation (p.u.)

ΔX hg :

Governor position change of hydro generation

ΔX tg :

Governor position change of thermal generation

K a :

Changing/discharging coefficient

K p :

Microgrid gain

K r :

Steam turbine reheat constant

N e :

Number of EVs in a EV aggregator

R h :

Speed regulation coefficient of hydro generation

R t :

Speed regulation coefficient of thermal generation

T t :

Steam turbine time constant

T e :

Time constant of EV

T lg :

Reset time of hydro turbine speed governor

T p :

Time constant of microgrid

T rh :

Time constant of hydro turbine speed governor transient droop

T r :

Steam turbine reheat time constant

T tg :

Time constant of speed governor

J :

Cost function

U :

Utility function

x :

State vector

γ :

Discount factor

µ :

Adaptive power control signal

x a :

Input vectors of action networks

x c :

Input vectors of critic networks

ψ :

Activation function

ι c / ι a :

Number of neurons in the input-layer of critic/action network

Ï„c/Ï„a:

Number of neurons in the hidden-layer of critic/action network

\(w_{ij}^{c1} /w_{ij}^{a1}\) :

Weights in input-to-hidden layer of critic/action network

\(w_j^{c2} /w_j^{a2}\) :

Weights in hidden-to-output layer of critic/action network

\(q_j^c /q_j^a\) :

Output of jth hidden-layer neuron of critic/action network

\(p_j^c /p_j^a\) :

Input of jth hidden-layer neuron of critic/action network

Ec/Ea:

Approximate error of critic/action network

r :

Reinforcement learning signal

Q, M:

Positive definite matrixes with proper dimensions

λc/λa:

Learning rate of critic/action network

u m :

Maximum value of PV reserve power

\({\mathcal{F}}\) :

Performance index

ΔP mt :

Output power change of micro-turbine (p.u.)

ΔP mg :

Governor position change of micro-turbine (p.u.)

ΔP ess :

Output power change of ESS (p.u.)

T mg :

Time constant of micro-turbine governor

T mt :

Time constant of micro-turbine

T ess :

Time constant of ESS

σ mg :

Uncertain parameter of micro-turbine governor

R mt :

Speed regulation coefficient of micro-turbine

u mg :

Control signal of micro-turbine

u ess :

Control signal of ESS

θ1, θ2:

Positive constants designed in the cost function

Ω c :

Admissible control set

Ess1:

Electrical changes of ESS due to frequency control (p.u.)

Ess2:

Electrical changes of ESS due to PV power dispatch (p.u.)

Soc0:

Initial electrical energy of ESS (p.u.h)

Socm/SocM:

Lower/upper bound of SOC (p.u.h)

\(\Delta P_{{\text{ess}}}^m /\Delta P_{{\text{ess}}}^M\) :

Lower/upper bound of ESS power output (p.u.)

β :

Charging/discharging coefficient of ESS

Bias:

Power deviation of load demands and PV

\(\Phi\) :

Regulation coefficient

A:

Ampere

AC:

Alternating current

ADP:

Adaptive dynamic programming

DC:

Direct current

ESS:

Energy storage system

EVs:

Electric vehicles

GRC:

Generation rate constraint

HJB:

Hamiltonian-Jacobi-Bellman

Hz:

Hertz

LFC:

Load frequency control

MPP:

Maximum power point

MPPT:

Maximum power point tracker

PI:

Proportion-integral

PID:

Proportion-integral-derivative

PV:

Photovoltaic

PWM:

Pulse width modulation

SMC:

Sliding mode control

SOC:

State of charge

V:

Voltage

V2G:

Vehicle-to-grid

References

  1. V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, G.P. Hancke, A survey on smart grid potential applications and communication requirements. IEEE Trans. Ind. Inform. 9(1), 28–42 (2013)

    Article  Google Scholar 

  2. K. Solangi, M. Islam, R. Saidur, N. Rahim, H. Fayaz, A review on global solar energy policy. Renew. Sust. Energ Rev. 15(4), 2149–2163 (2011)

    Article  Google Scholar 

  3. K. Ishaque, Z. Salam, A. Shamsudin, M. Amjad, A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm. Appl. Energy 99, 414–422 (2012)

    Article  Google Scholar 

  4. R.A. Mastromauro, M. Liserre, A. Dell’Aquila, Control issues in single-stage photovoltaic systems: MPPT, current and voltage control. IEEE Trans. Ind. Inform. 8(2), 241–254 (2012)

    Article  Google Scholar 

  5. R. Kadri, J.P. Gaubert, G. Champenois, An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control. IEEE Trans. Ind. Electron. 58(1), 66–75 (2011)

    Article  Google Scholar 

  6. K. Kobayashi, I. Takano, Y. Sawada, A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Sol. Energy Mater. Sol. Cells 90(18–19), 2975–2988 (2006)

    Article  Google Scholar 

  7. T. Esram, P.L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

  8. A.I. Dounis, P. Kofinas, C. Alafodimos, D. Tseles, Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system. Renew. Energy 60, 202–214 (2013)

    Article  Google Scholar 

  9. W. Xu, C. Mu, J. Jin, Novel linear iteration maximum power point tracking algorithm for photovoltaic power generation. IEEE Trans. Appl. Supercond. 24(5), 1–6 (2014)

    Article  Google Scholar 

  10. N. Kakimoto, S. Takayama, H. Satoh, K. Nakamura, Power modulation of photovoltaic generator for frequency control of power system. IEEE Trans. Energy Convers. 24(4), 943–949 (2009)

    Article  Google Scholar 

  11. N. Liu, M. Cheng, X. Yu, J. Zhong, J. Lei, Energy-sharing provider for PV prosumer clusters: a hybrid approach using stochastic programming and stackelberg game. IEEE Trans. Ind. Electron. 65(8), 6740–6750 (2018)

    Article  Google Scholar 

  12. H. Jia, X. Li, Y. Mu, C. Xu, Y. Jiang, X. Yu, J. Wu, C. Dong, Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays. Appl. Energy 210, 1363–1376 (2018)

    Article  Google Scholar 

  13. E. Vittal, M. O’Malley, A. Keane, A steady-state voltage stability analysis of power systems with high penetrations of wind. IEEE Trans. Power Syst. 25(1), 433–442 (2010)

    Article  Google Scholar 

  14. R. Shah, N. Mithulananthan, R. Bansal, V. Ramachandaramurthy, A review of key power system stability challenges for large-scale PV integration. Renew. Sust. Energ Rev. 41(Supplement C), 1423–1436 (2015)

    Google Scholar 

  15. F. Kennel, D. Görges, S. Liu, Energy management for smart grids with electric vehicles based on hierarchical MPC. IEEE Trans. Ind. Inform. 9(3), 1528–1537 (2013)

    Article  Google Scholar 

  16. C. Fernandes, P. Fras, J.M. Latorre, Impact of vehicle-to-grid on power system operation costs: the spanish case study. Appl. Energy 96, 194–202 (2012)

    Article  Google Scholar 

  17. S. Vachirasricirikul, I. Ngamroo, Robust LFC in a smart grid with wind power penetration by coordinated V2G control and frequency controller. IEEE Trans. Smart Grid 5(1), 371–380 (2014)

    Article  Google Scholar 

  18. V.P. Singh, N. Kishor, P. Samuel, Load frequency control with communication topology changes in smart grid. IEEE Trans. Ind. Inform. 12(5), 1943–1952 (2016)

    Article  Google Scholar 

  19. H. Bevrani, Robust Power System Frequency Control (Springer International Publishing, 2014)

    Google Scholar 

  20. P. Kundur, N.J. Balu, M.G. Lauby, Power System Stability and Control, vol. 7 (McGraw-Hill, New York, 1994)

    Google Scholar 

  21. Y. Tang, J. Yang, J. Yan, H. He, Intelligent load frequency controller using GrADP for island smart grid with electric vehicles and renewable resources. Neurocomputing 170, 406–416 (2015)

    Article  Google Scholar 

  22. S. Sukumar, M. Marsadek, A. Ramasamy, H. Mokhlis, S. Mekhilef, A fuzzy-based PI controller for power management of a grid-connected PV-SOFC hybrid system. Energies 10(11), 1720 (2017)

    Article  Google Scholar 

  23. K. Vrdoljak, N. Peri, I. Petrovi, Sliding mode based load-frequency control in power systems. Electr. Power Syst. Res. 80(5), 514–527 (2010)

    Article  Google Scholar 

  24. M. Klimontowicz, A. Al-Hinai, C.H. Peng, Optimal LFC SMC for three-area power system with high penetration of PV. J. Electr. Syst. 12(1), 68–84 (2016)

    Google Scholar 

  25. C. Mu, Y. Tang, H. He, Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy. IEEE Trans. Ind. Electron. 64(8), 6742–6751 (2017)

    Article  Google Scholar 

  26. X. Li, Y.-J. Song, S.-B. Han, Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller. J. Power Sources 180(1), 468–475 (2008)

    Article  Google Scholar 

  27. M. Veerachary, T. Senjyu, K. Uezato, Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans. Ind. Electron. 50(4), 749–758 (2003)

    Article  Google Scholar 

  28. M. Datta, T. Senjyu, A. Yona, T. Funabashi, C.H. Kim, A frequency-control approach by photovoltaic generator in a PV-Diesel hybrid power system. IEEE Trans. Energy Convers. 26(2), 559–571 (2011)

    Article  Google Scholar 

  29. C. Juang, C. Lu, Load-frequency control by hybrid evolutionary fuzzy PI controller. IEE Proc. Gener. Transm. Distrib. 153(2), 196–204 (2006)

    Article  Google Scholar 

  30. D. Rerkpreedapong, A. Hasanovic, A. Feliachi, Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst. 18(2), 855–861 (2003)

    Article  Google Scholar 

  31. D. Qian, S. Tong, H. Liu, X. Liu, Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbines. Neurocomputing 173, 875–885 (2016)

    Article  Google Scholar 

  32. P.J. Werbos, in Approximate Dynamic Programming for Real-Time Control and Neural Modeling. Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches (Van Nostrand Reinhold, 1992)

    Google Scholar 

  33. J. Si, Y.T. Wang, Online learning control by association and reinforcement. IEEE Trans. Neural Netw. 12(2), 264–276 (2001)

    Article  Google Scholar 

  34. H. He, Z. Ni, J. Fu, A three-network architecture for on-line learning and optimization based on adaptive dynamic programming. Neurocomputing 78(1), 3–13 (2012)

    Article  Google Scholar 

  35. P.K. Patchaikani, L. Behera, G. Prasad, A single network adaptive critic-based redundancy resolution scheme for robot manipulators. IEEE Trans. Ind. Electron. 59(8), 3241–3253 (2012)

    Article  Google Scholar 

  36. C. Mu, Z. Ni, C. Sun, H. He, Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Trans. Neural Netw. Learn Syst. 28(3), 584–598 (2017)

    Article  MathSciNet  Google Scholar 

  37. C. Mu, Y. Zhang, Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties. IEEE Trans. Neural Netw. Learn Syst. 31(1), 259–273 (2020)

    Article  MathSciNet  Google Scholar 

  38. C. Mu, K. Wang, C. Sun, Learning control supported by dynamic event communication applying to industrial systems. IEEE Trans. Ind. Inform. 17(4), 2325–2335 (2021)

    Article  Google Scholar 

  39. Z. Ni, H. He, J. Wen, X. Xu, Goal representation heuristic dynamic programming on maze navigation. IEEE Trans. Neural Netw. Learn Syst. 24(12), 2038–2050 (2013)

    Article  Google Scholar 

  40. S. Mohagheghi, Y. Valle, G.K. Venayagamoorthy, R.G. Harley, A proportional-integrator type adaptive critic design-based neurocontroller for a static compensator in a multimachine power system. IEEE Trans. Ind. Electron. 54(1), 86–96 (2007)

    Article  Google Scholar 

  41. W. Guo, F. Liu, J. Si, D. He, R. Harley, S. Mei, Online supplementary ADP learning controller design and application to power system frequency control with large-scale wind energy integration. IEEE Trans. Neural Netw. Learn Syst. 27(8), 1748–1761 (2016)

    Article  MathSciNet  Google Scholar 

  42. Y. Tang, H. He, J. Wen, J. Liu, Power system stability control for a wind farm based on adaptive dynamic programming. IEEE Trans. Smart Grid 6(1), 166–177 (2015)

    Article  Google Scholar 

  43. C. Mu, W. Liu, W. Xu, Hierarchically adaptive frequency control for an ev-integrated smart grid with renewable energy. IEEE Trans. Ind. Inform. 14(9), 4254–4263 (2018)

    Article  Google Scholar 

  44. C. Mu, Y. Zhang, H. Jia, H. He, Energy-storage-based intelligent frequency control of microgrid with stochastic model uncertainties. IEEE Trans. Smart Grid 11(2), 1748–1758 (2020)

    Article  Google Scholar 

  45. C. Mu, K. Wang, Z. Ni, C. Sun, Cooperative differential game-based optimal control and its application to power systems. IEEE Trans. Ind. Inform. 16(8), 5169–5179 (2020)

    Article  Google Scholar 

  46. J. Liang, G.K. Venayagamoorthy, R.G. Harley, Wide-area measurement based dynamic stochastic optimal power flow control for smart grids with high variability and uncertainty. IEEE Trans. Smart Grid 3(1), 59–69 (2012)

    Article  Google Scholar 

  47. H.J. Lee, J.B. Park, Y.H. Joo, Robust load-frequency control for uncertain nonlinear power systems: a fuzzy logic approach. Inf. Sci. 176(23), 3520–3537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. R.K. Sahu, S. Panda, U.K. Rout, DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity. Int. J. Electr. Power Energy Syst 49, 19–33 (2013)

    Article  Google Scholar 

  49. H. Asano, K. Yajima, Y. Kaya, Influence of photovoltaic power generation on required capacity for load frequency control. IEEE Trans. Energy Convers. 11(1), 188–193 (1996)

    Article  Google Scholar 

  50. G.Q. Zeng, X.Q. Xie, M.R. Chen, An adaptive model predictive load frequency control method for multi-area interconnected power systems with photovoltaic generations. Energies 10(11), 1840 (2017)

    Article  Google Scholar 

  51. X. Yu, Y. Xue, Smart grids: a cyber-physical systems perspective. Proc. IEEE 104(5), 1058–1070 (2016)

    Article  Google Scholar 

  52. G.O. Suvire, M.G. Molina, P.E. Mercado, Improving the integration of wind power generation into AC microgrids using flywheel energy storage. IEEE Trans. Smart Grid 3(4), 1945–1954 (2012)

    Article  Google Scholar 

  53. K. Takigawa, N. Okada, N. Kuwabara, A. Kitamura, F. Yamamoto, Development and performance test of smart power conditioner for value-added PV application. Sol. Energy Mater. Sol. Cells 75(3–4), 547–555 (2003)

    Article  Google Scholar 

  54. X. Li, D. Hui, X. Lai, Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Trans. Sustain. Energy 4(2), 464–473 (2013)

    Article  MathSciNet  Google Scholar 

  55. T. Zhao, Z. Ding, Cooperative optimal control of battery energy storage system under wind uncertainties in a microgrid. IEEE Trans. Power Syst. 33(2), 2292–2300 (2018)

    Article  Google Scholar 

  56. M.R. Aghamohammadi, H. Abdolahinia, A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded microgrid. Int. J. Electr. Power Energy Syst. 54, 325–333 (2014)

    Article  Google Scholar 

  57. P.C. Sekhar, S. Mishra, Storage free smart energy management for frequency control in a Diesel-PV-Fuel cell-based hybrid AC microgrid. IEEE Trans. Neural Netw. Learn Syst. 27(8), 1657–1671 (2016)

    Article  MathSciNet  Google Scholar 

  58. A. Oudalov, D. Chartouni, C. Ohler, Optimizing a battery energy storage system for primary frequency control. IEEE Trans. Power Syst. 22(3), 1259–1266 (2007)

    Article  Google Scholar 

  59. J.Y. Kim, J.H. Jeon, S.K. Kim, C. Cho, J.H. Park, H.M. Kim, K.Y. Nam, Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation. IEEE Trans. Power Electron. 25(12), 3037–3048 (2010)

    Article  Google Scholar 

  60. B. Ge, W. Wang, D. Bi, C.B. Rogers, F.Z. Peng, A.T. Almeida, H. Abu-Rub, Energy storage system-based power control for grid connected wind power farm. Int. J. Electr. Power Energy Syst. 44(1), 115–122 (2013)

    Article  Google Scholar 

  61. L. Johnston, F. Díaz-González, O. Gomis-Bellmunt, C. Corchero-arcía, M. Cruz-Zambrano, Methodology for the economic optimisation of energy storage systems for frequency support in wind power plants. Appl. Energy 137, 660–669 (2015)

    Google Scholar 

  62. D. Xu, J. Liu, X. Yan, W. Yan, A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage. IEEE Trans. Ind. Electron. 65(8), 6625–6634 (2018)

    Article  Google Scholar 

  63. L. Dong, Y. Zhang, Z. Gao, A robust decentralized load frequency controller for interconnected power systems. ISA Trans. 51(3), 410–419 (2012)

    Article  Google Scholar 

  64. C. Mu, Y. Zhang, Z. Gao, C. Sun, ADP-based robust tracking control for a class of nonlinear systems with unmatched uncertainties. IEEE Trans. Syst. Man Cybern. 50(11), 4056–4067 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mu, C., Zhang, Y., Liu, W., Xu, W. (2022). Multi-source Microgrid Frequency Stability Control Using Learning-Based Technology. In: Das, S.K., Islam, M.R., Xu, W. (eds) Advances in Control Techniques for Smart Grid Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-9856-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9856-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9855-2

  • Online ISBN: 978-981-16-9856-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics