Skip to main content

Control and Observation of Induction Motors Based on Full-Order Terminal Sliding-Mode Technique

  • Chapter
  • First Online:
Advances in Control Techniques for Smart Grid Applications
  • 426 Accesses

Abstract

This chapter proposes full-order terminal sliding-mode (FOTSM) based observation and control approaches for the sensorless speed control system of the induction motor (IM) with the full consideration of the unmatched uncertainties. The sensorless field orientation control (FOC) system for the IM is based on the accurately observing of the speed and the flux of the motor using the full-order terminal sliding-mode observer (FOTSMO). With the feedback of the precise estimated speed/flux, the FOTSM based controllers for the speed-, flux- and current-loops are designed to strengthen the robustness, accuracy and rapidness of the FOC system for the IM. By means of the virtual control technique in the outer-loop, the unmatched uncertainties including the parameter perturbation and the external disturbance can be thoroughly compensated. The proposed adaptive gain avoids overestimating the upper bound of the uncertainties in the FOC system for the IM. Due to the integral-type control law, the current references are smoothed and the chattering in the conventional SMC is eliminated. In the inner-loop controllers, the actual voltage control signals can force the tracking errors of the currents to converge to their equilibrium points in a finite time. Finally, the simulation and experimental results have demonstrated the effectiveness and feasibility of the proposed FOTSM based controllers and observers for the sensorless speed control of the IM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

u, u:

The voltage and voltage vector

i, i:

The current and current vector

Ï•, Ï•:

The flux and flux vector

θ :

The rotor electrical angle

ω :

The rotor electric angular velocity

ω m :

The rotor mechanical angular velocity

ω s :

The slip angle velocity

ω 1 :

The synchronous angle velocity with ω1 = ω + ωs

J :

The moment of inertia

R s :

The stator resistance

R r :

The rotor resistance

L s :

The stator inductance

L r :

The rotor inductance

L m :

The mutual inductance between the stator and rotor windings

T e :

The electrical torque

T L :

The load torque

n :

The rotation speed

^ :

The estimated value

— :

The error value

[]0:

The nominal value

[]ref:

The reference value

[]s, []r:

Stator and rotor parameters

[]ABC, []abc:

States in abc-axis

[]α, []β:

States in α- and β-axis

[]q, []d:

States in q- and d-axis

n p :

The number of pole pairs of the stator

Lsl, Lrl:

The stator and rotor leakage inductance

Lsm, Lrm:

The mutual inductance between the stator and rotor windings

T r :

The rotor time constant Tr = Lr/Rr

σ :

The leakage coefficient \(\sigma = 1 - L_m^2 /(L_s L_r )\)

K :

K = 1/(σLs)

ξ :

ξ = K(Lm/Ls)

λ :

\(\lambda = K(R_s + R_r L_m^2 /L_r^2 )\)

ADRC:

Active disturbance reject control

AFO:

Adaptive full-order observer

DTC:

Direct torque control

EKF:

Extended kalman filter

FOC:

Field-oriented control

FOTSM:

Full-order terminal sliding-mode

FOTSMO:

Full-order terminal sliding-mode observer

IM:

Induction motor

LSM:

Linear sliding-mode

LSMO:

Linear sliding-mode observer

MIMO:

Multiply inputs multiply outputs

MPC:

Model predictive control

MRAC:

Model reference adaptive control

PI:

Proportion-integral

SMC:

Sliding-mode control

SMO:

Sliding-mode observer

SVPWM:

Space vector pulse width modulation

References

  1. C. Luo, B. Wang, Y. Yu, C. Chen, Z. Huo, D. Xu, Decoupled stator resistance estimation for speed-sensorless induction motor drives considering speed and load torque variations. IEEE J. Emerg. Sel. Top. Power Electron. 8(2), 1193–1207 (2020)

    Article  Google Scholar 

  2. A. Datta, G. Poddar, Improved low-frequency operation of hybrid inverter for medium-voltage induction motor drive under V/F and vector control mode of operation. IEEE J. Emerg. Sel. Top. Power Electron. 8(2), 1248–1257 (2020)

    Article  Google Scholar 

  3. F. Zhang, A new high power factor AC-AC inverter. IEEE Power Electron Lett. 1(5), 10–13 (2000)

    Google Scholar 

  4. Y. Feng, J. Zheng, X. Yu, N.V. Truong, Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system. IEEE Trans. Ind. Electron. 56(9), 3424–3431 (2009)

    Article  Google Scholar 

  5. A. Ammar, A. Bourek, A. Benakcha, Sensorless SVM-direct torque control for induction motor drive using sliding-mode observers. J. Control Autom. Electr. Syst. 28(2), 189–202 (2017)

    Article  Google Scholar 

  6. M.S. Zaky, M.K. Metwaly, H.Z. Azazi, S.A. Deraz, A new adaptive SMO for speed estimation of sensorless induction motor drives at zero and very low frequencies. IEEE Trans. Ind. Electron. 65(9), 6901–6911 (2018)

    Google Scholar 

  7. O. Barambones, P. Alkorta, Position control of the induction motor using an adaptive sliding-mode controller and observers. IEEE Trans. Ind. Electron. 61(12), 6556–6565 (2014)

    Article  Google Scholar 

  8. M. Morawiec, A. Lewicki, Speed observer structure of induction machine based on sliding super-twisting and backstepping techniques. IEEE Trans. Ind. Info. 17(2), 1122–1131 (2021)

    Article  Google Scholar 

  9. L. Shen, L. Emil, J. Martin, FCS-MPC-based current control of a five-phase induction motor and its comparison with PI-PWM control. IEEE Trans. Ind. Electron. 61(1), 149–163 (2014)

    Article  Google Scholar 

  10. T. Jakub, L.V. Quoc, S. Vaclav, P. Zdenek, Adaptive speed control of induction motor drive with inaccurate model. IEEE Trans. Ind. Electron. 65(11), 8532–8542 (2018)

    Article  Google Scholar 

  11. A. Abdelkarim, B. Abdelhamid, B. Amor, Adaptive MRAC-based direct torque control with SVM for sensorless induction motor using adaptive observer. Int. J. Adv. Manuf. Technol. 91(5–8), 1631–1641 (2017)

    Google Scholar 

  12. T. Murata, T. Tsuchiya, I. Takeda, Vector control for induction machine on the application of optimal control theory. IEEE Trans. Ind. Electron. 37(4), 283–290 (1990)

    Article  Google Scholar 

  13. A. Matsushita, T. Tsuchiya, Decoupled preview control system and its application to induction motor drive. IEEE Trans. Ind. Electron. 42(1), 50–57 (1995)

    Article  Google Scholar 

  14. R. Gerasimos, B. Krishna, S. Dimitrios, Nonlinear optimal control for ship propulsion with the use of an induction motor and a drivetrain. MATEC Web Conf, vol. 188, no. 1, (2018)

    Google Scholar 

  15. H. Yang, Y. Zhang, P.D. Walker, A method to start rotating induction motor based on speed sensorless model-predictive control. IEEE Trans. Energy Convers. 32(1), 359–368 (2017)

    Article  Google Scholar 

  16. H. Gao, B. Wu, D. Xu, M. Pande, R.P. Aguilera, Common-mode-voltage-reduced model-predictive control scheme for current-source-converter-fed induction motor drives. IEEE Trans. Power Electron. 32(6), 4891–4904 (2017)

    Article  Google Scholar 

  17. F. Mehazzem, A. Reama, Comparative study of integral and classical backstepping controllers in IFOC of induction motor fed by voltage source inverter. Int. J. Hydrogen Energy 42(28), 17953–17964 (2017)

    Article  Google Scholar 

  18. B.R. Chiheb, F. Fethi, Z. Abderrahmen, C. Abdelkader, A novel adaptive control method for induction motor based on backstepping approach using dSpace DS 1104 control board. Mech. Syst. Signal Process 100, 466–481 (2018)

    Article  Google Scholar 

  19. R. Christian, R. Jose, K. Samir, V. Felipe, Multiobjective fuzzy-decision-making predictive torque control for an induction motor drive, in IEEE Transaction on Power Electron, vol. 32, no. 8 (2017), pp. 6245–6260

    Google Scholar 

  20. D. Xu, J. Huang, X. Su, P. Shi, Adaptive command-filtered fuzzy backstepping control for linear induction motor with unknown end effect. Inf. Sci. 477, 118–131 (2019)

    Article  MathSciNet  Google Scholar 

  21. Z. Mohamed, K. Mohamed, A performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI controllers, in IEEE Transaction on Power Electron, vol. 32, no. 5 (2017), pp. 3741–3753

    Google Scholar 

  22. H. Sathishkumar, S. S. Parthasarathy, A novel neural network intelligent controller for vector controlled induction motor drive, Energy Procedia, vol. 138, no. 1.1 (2017), pp. 692–697

    Google Scholar 

  23. Z. Yin, C. Du, J. Liu, Research on autodisturbance-rejection control of induction motors based on an ant colony optimization algorithm. IEEE Trans. Ind. Electron 65(4), 3077–3094 (2018)

    Article  Google Scholar 

  24. A. Abdelkarim, B. Amor, B. Abdelhamid, Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding-mode control. ISA Trans. 67, 428–442 (2017)

    Article  Google Scholar 

  25. M. Saleh, Y. Hamid, A.K.Mojtaba, Adaptive sliding-mode type-2 neuro-fuzzy control of an induction motor, Expert Sys. Appl. 42(19), 6635–6647 (2015)

    Google Scholar 

  26. T.A.V. Ravi, C. Chandan, P. Bikash, Disturbance rejection analysis and FPGA-based implementation of a second-order sliding-mode controller fed induction motor drive, IEEE Trans. Energy Convers. 33(3), 1453–1462 (2018)

    Google Scholar 

  27. A. Francesco, C. Maurizio, D. Filippo, Robust active disturbance rejection control of induction motor systems based on additional sliding-mode component. IEEE Trans. Ind Electron. 64(7), 5608–5621 (2017)

    Article  Google Scholar 

  28. D.G. Stefano, R.D. Jorge, M.M. Antonio, Sensorless high order sliding-mode control of induction motors with core loss. IEEE Trans. Ind. Electron. 61(6), 2678–2689 (2014)

    Article  Google Scholar 

  29. B. Oscar, A. Patxi, Position control of the induction motor using an adaptive sliding-mode controller and observers. IEEE Trans. Ind Electron. 61(12), 6556–6565 (2014)

    Article  Google Scholar 

  30. C. Edwards, S. Spurgeon, Sliding-Mode Control: Theory and Applications (Crc Press, 1998)

    Google Scholar 

  31. Y. Shtessel, C. Edwards, L. Fridman, Sliding-Mode Control and Observation (Springer, New York, 2014), pp. 213–249

    Book  Google Scholar 

  32. B. Zheng, J.H. Park, Sliding-mode control design for linear systems subject to quantization parameter mismatch. J. Franklin Inst. 353(1), 37–53 (2016)

    Article  MathSciNet  Google Scholar 

  33. A. Ahmadreza, L. Li, S. Su, N. Hung, On LMI-based sliding-mode control for uncertain discrete-time systems. J. Franklin Inst. 353(15), 3857–3875 (2016)

    Article  MathSciNet  Google Scholar 

  34. H.M. Hosein, O. Mansour, T. Asghar, Modified DTC of a six-phase induction motor with a second-order sliding-mode MRAS-based speed estimator. IEEE Trans. Power Electron. 34(1), 600–611 (2019)

    Article  Google Scholar 

  35. S. Ouchen, M. Benbouzid, F. Blaabjerg, A. Betka, H. Steinhart, Direct power control of shunt active power filter using space vector modulation based on super twisting sliding-mode control, IEEE J. Emerg. Sel. Top. Power. Electron. (2020)

    Google Scholar 

  36. Y. Feng, M. Zhou, Q. Han, F. Han, Z. Cao, S. Ding, Integral-type sliding-mode control for a class of mechatronic systems with gain adaptation. IEEE Trans. Ind. Info. 16(8), 5357–5368 (2020)

    Article  Google Scholar 

  37. Y. Feng, M. Zhou, X. Zheng, F. Han, X. Yu, Full-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. J. Franklin Inst. 355(2), 653–674 (2018)

    Google Scholar 

  38. M. Zhou, Y. Feng, C. Xue, F. Han, Deep convolutional neural network based fractional-order terminal sliding-mode control for robotic manipulators. Neurocomputing (2019)

    Google Scholar 

  39. B.K. Bose, Power Electronics and AC Drives (Englewood Cliffs, 1986)

    Google Scholar 

  40. H.-J. Shieh, K.-K. Shyu, Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive. IEEE Trans. Ind. Electron. 46(2), 380–389 (1999)

    Article  Google Scholar 

  41. J. Xu, R. Yi, B. Chen, Stator-flux-orientated slip frequency control for induction motor, IPEMC, vol. 1 (2004), pp. 401–404

    Google Scholar 

  42. S. Bhat, D. Bernstein, Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, M., Cheng, S., Xu, W., Feng, Y., Su, H. (2022). Control and Observation of Induction Motors Based on Full-Order Terminal Sliding-Mode Technique. In: Das, S.K., Islam, M.R., Xu, W. (eds) Advances in Control Techniques for Smart Grid Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-9856-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9856-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9855-2

  • Online ISBN: 978-981-16-9856-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics