Skip to main content

Breeding Groundnut Cultivars for Resilience to Climate Change Effects

  • Chapter
  • First Online:
Developing Climate Resilient Grain and Forage Legumes

Abstract

The major effects of climate change such as variation in annual rainfall, drought, high temperature, and elevated CO2 affect the morphology, physiology, pod yield, and quality of groundnut. Genetic variability in groundnut is reported for tolerance to drought and heat stress as well as for other key traits such as photosynthetic rate, daily growth partitioned to pods, and seed-filling duration for pods that are important traits for climate change adaptation. Development of climate-resilient groundnut cultivars is an environmentally sustainable approach that requires understanding the responses and coping mechanisms under climate change scenarios and its genetics. Modeled projections showed that by 2050, −34 to 43% change in groundnut yields will occur across various regions in India due to climate change, indicating yield gains in some regions while losses in others. Tolerance to drought and heat is a complex trait, and the co-occurrence of these two stresses can exaggerate the consequences on yield and quality in the rainfed agro-ecologies where groundnut is largely grown. This chapter reviews various climatic factors, namely, drought, heat stress, and elevated CO2 affecting groundnut productivity and quality under the changing climate scenario, and genetic interventions to breed improved groundnut cultivars with resilience to climate change effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdElgawad H, Farfan-Vignolo ER, deVos D, Asard H (2015) Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci 231:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ahmad MA, Javed R, Adeel M, Rizwan M, Yang Y (2020) PEG 6000-stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production, and antioxidant activities in Stevia rebaudiana Bertoni. Plan Theory 9(11):1552

    CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoo Ra HS, Zhu XG, Curtis PS (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Chang Biol 8(8):695–709

    Article  Google Scholar 

  • Ainsworth EA, Rogers A, Vodkin LO, Walter A, Schurr U (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol 142(1):135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbar A, Singh Manohar S, Tottekkaad Variath M, Kurapati S, Pasupuleti J (2017) Efficient partitioning of assimilates in stress-tolerant groundnut genotypes under high-temperature stress. Agronomy 7(2):30

    Article  CAS  Google Scholar 

  • Alhassan K (2018) Proximate composition and functional properties of some new groundnut accessions. (Doctoral dissertation)

    Google Scholar 

  • Aranjuelo I, Pardo A, Biel C, Save R, Joaquim A-B, Nogues S (2009) Leaf carbon management in slow-growing plants exposed to elevated CO2. Glob Chang Biol 15(1):97–109

    Article  Google Scholar 

  • Arunachalam P, Kannan P (2013) Screening for drought tolerant groundnut (Arachis hypogaea L.) lines suitable for rainfed Alfisol. Asian J Agric Res 7(1):35–42

    Google Scholar 

  • Arunyanark A, Jogloy S, Wongkaew S, Akkasaeng C, Vorasoot N, Wright GC, Rachaputi RC, Patanothai A (2009) Association between aflatoxin contamination and drought tolerance traits in peanut. Field Crop Res 114(1):14–22

    Article  Google Scholar 

  • Arya SS, Salve AR, Chauhan S (2016) Peanuts as functional food: a review. J Food Sci Technol 53(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacharou Falke A, Hamidou F, Halilou O, Harou A (2019) Assessment of groundnut elite lines under drought conditions and selection of tolerance associated traits. Adv Agric:3034278

    Google Scholar 

  • Baker JT, Allen LH (1993) Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus. Vegetatio 104(1):239–260

    Article  Google Scholar 

  • Basu MS (2004) Improving water use efficiency and drought tolerance in groundnut by trait based breeding programmes in India. JAL 2(288):98

    Google Scholar 

  • Bhogireddy S, Xavier A, Garg V, Layland N, Arias R, Payton P, Nayak SN, Pandey MK, Puppala N, Varshney RK (2020) Genome-wide transcriptome and physiological analyses provide new insights into peanut drought response mechanisms. Sci Rep 10(1):1–6

    Article  CAS  Google Scholar 

  • Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2015) Is there potential to adapt soybean (Glycine max M err.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ 38(9):1765–1774

    Article  PubMed  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Black CK, Davis SC, Hudiburg TW, Bernacchi CJ, DeLucia EH (2017) Elevated CO2 and temperature increase soil C losses from a soybean–maize ecosystem. Glob Chang Biol 23(1):435–445

    Article  PubMed  Google Scholar 

  • Broberg MC, Högy P, Pleijel H (2017) CO2-induced changes in wheat grain composition: meta-analysis and response functions. Agronomy 7(2):32

    Article  CAS  Google Scholar 

  • Bunce JA (2001) Direct and acclimatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field. Glob Chang Biol 7(3):323–331

    Article  Google Scholar 

  • Chakraborty K, Mahatma MK, Thawait LK, Bishi SK, Kalariya KA, Singh AL (2015a) Water deficit stress affects photosynthesis and the sugar profile in source and sink tissues of groundnut (Arachis hypogaea L.) and impacts kernel quality. J Appl Bot Food Qual 89:98–104

    Google Scholar 

  • Chakraborty K, Singh AL, Kalariya KA, Goswami N (2015b) Physiological responses of peanut (Arachis hypogaea L.) cultivars to water deficit stress: status of oxidative stress and antioxidant enzyme activities. Acta Bot Croat 74(1):123–142

    Article  CAS  Google Scholar 

  • Chakraborty K, Bishi SK, Singh AL, Zala PV, Mahatma MK, Kalariya KA, Jat RA (2018) Rapid induction of small heat shock proteins improves physiological adaptation to high temperature stress in peanut. J Agron Crop Sci 204(3):285–297

    Article  CAS  Google Scholar 

  • Change IPOC (2014) IPCC. Climate change

    Google Scholar 

  • Cole MB, Augustin MA, Robertson MJ, Manners JM (2018) The science of food security. NPJ Sci Food 2(1):1–8

    Article  Google Scholar 

  • Conkerton EJ, Ross LF, Daigle DJ, Kvien CS, McCombs C (1989) The effect of drought stress on peanut seed composition. II. Oil, protein and minerals. Oleagineux (France) 44(12):587–596

    Google Scholar 

  • Craufurd PQ, Prasad PV, Kakani VG, Wheeler TR, Nigam SN (2003) Heat tolerance in groundnut. Field Crop Res 80(1):63–77

    Article  Google Scholar 

  • Cuc DT, Phuong PT, Loan NT, Cuong ND, Ngoan NT, Phuc NL, Anh DT, Khanh TD, Trung KH (2021) Integration of traditional and molecular breeding to improve drought tolerance of groundnut. Adv Studies Biol 13(1):29–36

    Article  Google Scholar 

  • Dai L, Zhang G, Yu Z, Ding H, Xu Y, Zhang Z (2019) Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil. Int J Mol Sci 20(9):2265

    Article  CAS  PubMed Central  Google Scholar 

  • Devi MJ, Sinclair TR, Vadez V, Shekoofa A, Puppala N (2019) Strategies to enhance drought tolerance in peanut and molecular markers for crop improvement. Genomics assisted breeding of crops for abiotic stress tolerance. Vol. II, pp. 131–143.

    Google Scholar 

  • Dey SK, Chakrabarti B, Prasanna R, Pratap D, Singh SD, Purakayastha TJ, Pathak H (2017) Elevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation enhances nitrogen fixation and uptake in cowpea crop. Arch Agron Soil Sci 63(13):1927–1937

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1–9

    Article  CAS  Google Scholar 

  • FAO (2002) Joint FAO/WHO Expert Committee on Food Additives, Joint FAO/WHO Expert Committee on Food Additives. Meeting, & World Health Organization. Evaluation of Certain Food Additives and Contaminants: Fifty-seventh Report of the Joint FAO/WHO Expert Committee on Food Additives, vol. 57. World Health Organization

    Google Scholar 

  • FAO (2019) Food and Agriculture Organization of the United Nations-Statistic Division https://www.fao.org/faostat/en/#data

  • Farooq M, Wahid A, Kobayashi NSMA, Fujita DBSMA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Sustain Agric:153–188

    Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2012) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12(1):1–6

    Article  Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerance in tomato (No. Book). Food Products Press

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J (2007) Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Climate change: the physical science basis 2007

    Google Scholar 

  • Fukayama H, Sugino M, Fukuda T, Masumoto C, Taniguchi Y, Okada M, Sameshima R, Hatanaka T, Misoo S, Hasegawa T, Miyao M (2011) Gene expression profiling of rice grown in free air CO2 enrichment (FACE) and elevated soil temperature. Field Crop Res 121(1):195–199

    Article  Google Scholar 

  • Furlan AL, Bianucci E, Giordano W, Castro S, Becker DF (2020) Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiol Biochem 151:566–578

    Article  CAS  PubMed  Google Scholar 

  • Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S (2018) New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ 41(6):1233–1246

    Article  CAS  PubMed  Google Scholar 

  • Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MV, Narasu ML, Hoisington DA, Knapp SJ (2012) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30(2):757–772

    Article  CAS  PubMed  Google Scholar 

  • Girdthai T, Jogloy S, Vorasoot N, Akkasaeng C, Wongkaew S, Patanothai A, Holbrook CC (2012) Inheritance of the physiological traits for drought resistance under terminal drought conditions and genotypic correlations with agronomic traits in peanut. Sabrao J Breed Genet 44:240–262

    Google Scholar 

  • Guasch-Ferré M, Liu X, Malik VS, Sun Q, Willett WC, Manson JE, Rexrode KM, Li Y, Hu FB, Bhupathiraju SN (2017) Nut consumption and risk of cardiovascular disease. J Am Coll Cardiol 70(20):2519–2532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gundaraniya SA, Ambalam PS, Tomar RS (2020) Metabolomic profiling of drought-tolerant and susceptible peanut (Arachis hypogaea L.) genotypes in response to drought stress. ACS Omega 5(48):31209–31219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AE (1992) Breeding for heat tolerance. Plant Breed Rev 10(2):129–168

    Google Scholar 

  • Hamidou F, Halilou O, Vadez V (2013) Assessment of groundnut under combined heat and drought stress. J Agron Crop Sci 199(1):1–11

    Article  Google Scholar 

  • Hamim H (2005) Photosynthesis of C3 and C4 species in response to increased CO2 concentration and drought stress. Hayati J Biosci 12(4):131–131

    Article  Google Scholar 

  • Haro RJ, Dardanelli JL, Collino DJ, Otegui ME (2010) Water deficit and impaired pegging effects on peanut seed yield: links with water and photosynthetically active radiation use efficiencies. Crop Pasture Sci 61(5):343–352

    Article  CAS  Google Scholar 

  • Hashim IB, Koehler PE, Eitenmiller RR (1993) Tocopherols in runner and virginia peanut cultivars at various maturity stages. J Am Oil Chem Soc 70(6):633–635

    Article  CAS  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci 97(8):4392–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth CJ (2005) of Tolerance to High Temperature. Abiotic stresses: Plant resistance through breeding and molecular approaches 1920

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson CL, Hu FB (2014) Long-term associations of nut consumption with body weight and obesity. Am J Clin Nutr 100(Suppl. 1):408–411

    Article  CAS  Google Scholar 

  • Jain AK, Basha SM, Holbrook CC (2001) Identification of drought-responsive transcripts in peanut (Arachis hypogaea L.). Electron J Biotechnol 4(2):3–4

    Article  Google Scholar 

  • Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jena UR, Swain DK, Hazra KK, Maiti MK (2018) Effect of elevated [CO2] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in eastern India. J Sci Food Agric 98(15):5841–5852

    Article  CAS  PubMed  Google Scholar 

  • Jenks MA, Hasegawa PM, Jain SM (eds) (2007) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 1–32

    Book  Google Scholar 

  • Jiang C, Li X, Zou J, Ren J, Jin C, Zhang H, Yu H, Jin H (2021) Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biol 21(1):1–4

    Article  Google Scholar 

  • Jianlin W, Guirui Y, Quanxiao F, Defeng J, Hua Q, Qiufeng W (2008) Responses of water use efficiency of 9 plant species to light and CO2 and their modeling. Acta Ecol Sin 28(2):525–533

    Article  Google Scholar 

  • Jones P, Allen LH Jr, Jones JW, Boote KJ, Campbell WJ (1984) Soybean canopy growth, photosynthesis, and transpiration responses to whole-season carbon dioxide enrichment 1. Agron J 76(4):633–637

    Article  CAS  Google Scholar 

  • Junjittakarn J, Girdthai T, Jogloy S, Vorasoot N, Patanothai A (2014) Response of root characteristics and yield in peanut under terminal drought condition. Chilean J Agric Res 74(3):249–256

    Article  Google Scholar 

  • Kadiyala MDM, Nedumaran S, Padmanabhan J, Gumma MK, Gummadi S, Srigiri SR, Robertson R, Whitbread A (2021) Modeling the potential impacts of climate change and adaptation strategies on groundnut production in India. Sci Total Environ 776:145996

    Article  CAS  PubMed Central  Google Scholar 

  • Kakeeto R, Melis R, Biruma M, Sibiya J (2020) Gene action governing the inheritance of drought tolerance and selected agronomic traits in Ugandan groundnut (Arachis hypogaea L.) lines under drought environment. Euphytica 216(1):1–21

    Article  CAS  Google Scholar 

  • Kambiranda DM, Vasanthaiah HK, Katam R, Ananga A, Basha SM, Naik K (2011) Impact of drought stress on peanut (Arachis hypogaea L.) productivity and food safety. Plants Environ:249–272

    Google Scholar 

  • Kaushal N, Bhandari K, Siddique KH, Nayyar H (2016) Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric 2(1):1134380

    Google Scholar 

  • Kokkanti RR, Hindu V, Latha P, Vasanthi RP, Sudhakar P, Usha R (2019) Assessment of genetic variability and molecular characterization of heat stress tolerant genes in Arachis hypogaea L. through qRT-PCR. Biocatal Agric Biotechnol 20:101242

    Google Scholar 

  • Krishnan P, Swain DK, Bhaskar BC, Nayak SK, Dash RN (2007) Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric Ecosyst Environ 122(2):233–242

    Article  Google Scholar 

  • Kumar R, Singh AK, Lavania D, Siddiqui MH, Al-Whaibi MH, Grover A (2016) Expression analysis of ClpB/Hsp100 gene in faba bean (Vicia faba L.) plants in response to heat stress. Saudi J Biol Sci 23(2):243–247

    Article  CAS  PubMed  Google Scholar 

  • Lal C, Ajay BC, Chikani BM, Gor HK (2019) AMMI and GGE biplot analysis to evaluate the phenotypic stability of recombinant inbred lines (RILs) of peanut under mid-season water stress conditions. Indian J Genet 79(2):420–426

    Google Scholar 

  • Leadley PW, Niklaus P, Stocker R, Körner C (1997) Screen-aided CO2 control (SACC): a middle ground between FACE and open-top chambers. Acta Oecol 18(3):207–219

    Article  Google Scholar 

  • Leal-Bertioli SC, Moretzsohn MC, Roberts PA, Ballén-Taborda C, Borba TC, Valdisser PA, Vianello RP, Araújo ACG, Guimarães PM, Bertioli DJ (2016) Genetic mapping of resistance to Meloidogyne arenaria in Arachis stenosperma: a new source of nematode resistance for peanut. G3: Genes Genomes Genetics 6(2):377–390

    Article  CAS  Google Scholar 

  • Lee JS, Tetsuyuki U, Takehisa O, Lee HJ (2000) High performance of temperature gradient chamber newly built for studying global warming effect on a plant population. Korean J Ecol 23(4):293–298

    Google Scholar 

  • Lee-Ho E, Walton LJ, Reid DM, Yeung EC, Kurepin LV (2007) Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy. Botany 85(3):324–330

    CAS  Google Scholar 

  • Li P, Ainsworth EA, Leakey AD, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ (2008) Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell Environ 31(11):1673–1687

    Article  PubMed  CAS  Google Scholar 

  • Li G, Wan Y, Liu F, Zhang K (2014) Morphological and physiological traits of root in different drought resistant peanut cultivars. Acta Agron Sin 40(3):531–541

    Article  CAS  Google Scholar 

  • Li Y, Yu Z, Jin J, Zhang Q, Wang G, Liu C, Wu J, Wang C, Liu X (2018) Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages. Front Plant Sci 9:1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu NY, Ko SS, Yeh KC, Charng YY (2006) Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci 170(5):976–985

    Article  CAS  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    Article  CAS  PubMed  Google Scholar 

  • Loladze I (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. elife 3:e02245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luis JM, Ozias-Akins P, Holbrook CC, Kemerait RC Jr, Snider JL, Liakos V (2016) Phenotyping peanut genotypes for drought tolerance. Peanut Sci 43(1):36–48

    Article  Google Scholar 

  • Mahantesh S, Babu HN, Ghanti K, Raddy PC (2018) Identification of drought tolerant genotypes based on physiological, biomass and yield response in groundnut (Arachis hypogaea L.). Indian J Agric Res 52(3):221–227

    Google Scholar 

  • Maini HK, Tiwari MK, Bahl M, John T, Chopra P, Singh D, Yadav VS, Anand JR, Poddar N, Mitra AP, Garg SC (2002) Free air carbon dioxide enrichment facility development for crop experiments. Indian J Radio Space Phys 31:404–409

    CAS  Google Scholar 

  • Manjula O, Srimurali M, Vanaja M (2018) Impact of elevated carbon dioxide on two groundnut genotypes (Arachis hypogaea L.) under open top chamber facility. Int J Environ Agric Biotechnol 3(1):239041

    Google Scholar 

  • McDonald EP, Erickson JE, Kruger EL (2002) Research note: can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Funct Plant Biol 29(9):1115–1120

    Article  PubMed  Google Scholar 

  • Mihara Y (1971) Proposing temperature response curve technique for field crop experiment. Agric Hortic 46:721–726

    Google Scholar 

  • Mishra AK, Agrawal SB (2014) Cultivar specific response of CO2 fertilization on two tropical mung bean (Vigna radiata L.) cultivars: ROS generation, antioxidant status, physiology, growth, yield and seed quality. J Agron Crop Sci 200(4):273–289

    Article  CAS  Google Scholar 

  • Misra V, Shrivastava AK, Mall AK, Solomon S, Singh AK, Ansari MI (2019) Can sugarcane cope with increasing atmospheric CO2 concentration? Aust J Crop Sci 13(5):780–784

    Article  CAS  Google Scholar 

  • Mohamed A, Monnier Y, Mao Z, Lobet G, Maeght JL, Ramel M, Stokes A (2017) An evaluation of inexpensive methods for root image acquisition when using rhizotrons. Plant Methods 13(1):1–13

    Article  Google Scholar 

  • Nageswara Rao RC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. J Agron Crop Sci 186(3):175–182

    Article  Google Scholar 

  • Nautiyal PC, Rajgopal K, Zala PV, Pujari DS, Basu M, Dhadhal BA, Nandre BM (2008) Evaluation of wild Arachis species for abiotic stress tolerance: I. Thermal stress and leaf water relations. Euphytica 159(1):43–57

    Article  Google Scholar 

  • Nieuwenhuis L, van den Brandt PA (2019) Nut and peanut butter consumption and the risk of lung cancer and its subtypes: a prospective cohort study. Lung Cancer 128:57–66

    Article  PubMed  Google Scholar 

  • Nigam SN, Dwivedi SL, Gibbons RW (1991) Groundnut breeding: constraints, achievements and future possibilities. In Plant breeding abstracts, vol. 61, No. 10. CAB, pp. 1127-1136

    Google Scholar 

  • Nigam SN, Upadhyaya HD, Chandra S, Rao RN, Wright GC, Reddy AGS (2001) Gene effects for specific leaf area and harvest index in three crosses of groundnut (Arachis hypogaea). Ann Appl Biol 139(3):301–306

    Article  Google Scholar 

  • Nigam SN, Chandra S, Sridevi KR, Bhukta M, Reddy AGS, Rachaputi NR, Wright GC, Reddy PV, Deshmukh MP, Mathur RK (2005) Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146(4):433–439

    Article  Google Scholar 

  • Oppong-Sekyere D, Akromah R, Ozias-Akins P, Laary JK, Gimode D (2019) Heritability studies of drought tolerance in groundnuts using the North Carolina design II fashion and variance component method. J Plant Breed Crop Sci 11(9):234–253

    Article  Google Scholar 

  • Pacheco MRPDS, Helene MEM (1990) Atmosfera, fluxos de carbono e fertilização por CO2. Estudos avançados 4(9):204–220

    Article  Google Scholar 

  • Painawadee M, Jogloy S, Kesmala T, Akkasaeng C, Patanothai A (2009) Heritability and correlation of drought resistance traits and agronomic traits in peanut (Arachis hypogaea L.). Asian J Plant Sci 8(5):325–334

    Article  Google Scholar 

  • Pan C, Ahammed GJ, Li X, Shi K (2018) Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Front Plant Sci 9:1739

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Sharma S, Hamidou F, Kumar VA, Khera P, Bhat RS, Khan AW, Singh S, Li H, Monyo E, Nadaf HL, Mukri G, Jackson SA, Guo B, Liang X, Varshney RK (2014) Genome-wide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 9(8):e105228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey MK, Gangurde SS, Sharma V, Pattanashetti SK, Naidu GK, Faye I, Hamidou F, Desmae H, Kane NA, Yuan M, Vadez V, Nigam SN, Varshney RK (2020) Improved genetic map identified major QTLs for drought tolerance-and iron deficiency tolerance-related traits in groundnut. Genes 12(1):37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasupuleti J, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23

    Google Scholar 

  • Pettit RE, Taber RA, Schroeder HW, Harrison AL (1971) Influence of fungicides and irrigation practice on aflatoxin in peanuts before digging. Appl Microbiol 22(4):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phene CJ, Baker DN, Lambert JR, Parsons JE, McKinion JM (1978) SPAR—A soil-plant-atmosphere research system. Trans ASAE 21(5):924–0930

    Article  Google Scholar 

  • Pilbeam DJ (2015) Breeding crops for improved mineral nutrition under climate change conditions. J Exp Bot 66(12):3511–3521

    Article  CAS  PubMed  Google Scholar 

  • Porch TG (2006) Application of stress indices for heat tolerance screening of common bean. J Agron Crop Sci 192(5):390–394

    Article  Google Scholar 

  • Prasad PV, Kakani VG, Upadhyaya HD (2010) Growth and production of groundnut. UNESCO Encyclopedia:1–26

    Google Scholar 

  • Prasinos C, Krampis K, Samakovli D, Hatzopoulos P (2005) Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56(412):633–644

    Article  CAS  PubMed  Google Scholar 

  • Pritchard SG, Ju Z, van Santen E, Qiu J, Weaver DB, Prior SA, Rogers HH (2000) The influence of elevated CO2 on the activities of antioxidative enzymes in two soybean genotypes. Funct Plant Biol 27(11):1061–1068

    Article  CAS  Google Scholar 

  • Rao MV, Nigam SN, Huda AKS (1992) The thermal time concept as a selection criterion for earliness in peanut. Peanut Sci 19(1):7–10

    Article  Google Scholar 

  • Ratnakumar P, Vadez V (2011) Groundnut (Arachis hypogaea) genotypes tolerant to intermittent drought maintain a high harvest index and have small leaf canopy under stress. Funct Plant Biol 38(12):1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122(6):1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Reddy KR, Hodges HF (2000) Climate Change and global crop productivity

    Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci:46–57

    Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3(6):942–955

    Article  CAS  PubMed  Google Scholar 

  • Sadat S, Saeid KA, Bihamta MR, Torabi S, Salekdeh SG, Ayeneh GA (2013) Marker assisted selection for heat tolerance in bread wheat. World Appl Sci J 21(8):1181–1189

    CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25(2):163–171

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci 107(19):8569–8574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders TH, Cole RJ, Blankenship PD, Dorner JW (1993) Aflatoxin contamination of peanuts from plants drought stressed in pod or root zones. Peanut Sci 20(1):5–8

    Article  CAS  Google Scholar 

  • Savchenko GE, Klyuchareva EA, Abramchik LM, Serdyuchenko EV (2002) Effect of periodic heat shock on the inner membrane system of etioplasts. Russ J Plant Physiol 49(3):349–359

    Article  CAS  Google Scholar 

  • Selvaraj MG, Burow G, Burke JJ, Belamkar V, Puppala N, Burow MD (2011) Heat stress screening of peanut (Arachis hypogaea L.) seedlings for acquired thermotolerance. Plant Growth Regul 65(1):83–91

    Article  CAS  Google Scholar 

  • Seneweera SP, Ghannoum O, Conroy JP, Ishimaru K, Okada M, Lieffering M, Kim HY, Kobayashi K (2002) Changes in source–sink relations during development influence photosynthetic acclimation of rice to free air CO2 enrichment (FACE). Funct Plant Biol 29(8):947–955

    Article  PubMed  Google Scholar 

  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Singh G (1987) Effect of water stress on yield and quality of groundnut. Environ Ecol 5(4):647–650

    Google Scholar 

  • Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29(1):90–98

    Article  Google Scholar 

  • Sinclair TR, Van Houtte RC (1979) Mobile laboratory for continuous, long-term gas exchange measurements of 39 leaves. Photosynthetica 13(4):446–453

    Google Scholar 

  • Singh D, Balota M, Collakova E, Isleib TG, Welbaum GE, Tallury SP (2016) Heat stress related physiological and metabolic traits in peanut seedlings. Peanut Sci 43(1):24–35

    Article  Google Scholar 

  • Singh B, Salaria N, Thakur K, Kukreja S, Gautam S, Goutam U (2019) Functional genomic approaches to improve crop plant heat stress tolerance. F1000Res:8

    Google Scholar 

  • Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanciel K, Mortley DG, Hileman DR, Loretan PA, Bonsi CK, Hill WA (2000) Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment. HortScience 35(1):49–52

    Article  CAS  PubMed  Google Scholar 

  • Sun AQ, Yi SY, Yang JY, Zhao CM, Liu J (2006) Identification and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Sci 170(3):551–562

    Article  CAS  Google Scholar 

  • Sun L, Yang YJ, Xian T, Lu ZM, Fu YF (2010) Strong enhancement of chlorophyll a concentration by a weak typhoon. Mar Ecol Prog Ser 404:39–50

    Article  Google Scholar 

  • Suriharn B, Patanothai A, Jogloy S (2005) Gene effects for specific leaf area and harvest index in peanut (Arachis hypogaea L.). Asian J Plant Sci 4(6):667–672

    Article  Google Scholar 

  • Thakur SB, Ghimire SK, Shrestha SM, Chaudhary NK, Mishra B (2013) Variability in groundnut genotypes for tolerance to drought. Nepal J Sci Technol 14(1):41–50

    Article  Google Scholar 

  • Török Z, Goloubinoff P, Horváth I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vígh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci 98(6):3098–3103

    Article  PubMed  PubMed Central  Google Scholar 

  • UNICEF (2007) Progress for children: a World fit for children: statistical review

    Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Nadaf HL, Singh S (2011) Phenotypic diversity and identification of wild Arachis accessions with useful agronomic and nutritional traits. Euphytica 182(1):103–115

    Article  Google Scholar 

  • Uprety DC, Garg SC, Bisht BS, Maini HK, Dwivedi N, Paswan G, Raj A, Saxena DC (2006) Carbon dioxide enrichment technologies for crop response studies. J Scientific Ind Res 65:859–866

    CAS  Google Scholar 

  • Vaidya S, Vanaja M, Sathish P, Vagheera P, Anitha Y (2014) Impact of elevated CO2 on growth and physiological parameters of groundnut (Arachis hypogaea L.) genotypes. J Plant Physiol Pathol 3:1–5

    Google Scholar 

  • Vanaja M, Maheswari M, Ratnakumar P, Ramakrishna YS (2006) Monitoring and controlling of CO2 concentrations in open top chambers for better understanding of plants response to elevated CO2 levels. Indian J Radio Space Phys 35:193–197

    CAS  Google Scholar 

  • Vanaja M, Reddy PR, Jyothi Lakshmi N, Maheswari M, Vagheera P, Ratnakumar P, Jyothi M, Yadav SK, Venkateswarlu B (2007) Effect of elevated atmospheric CO2 concentrations on growth and yield of blackgram (Vigna mungo L. Hepper)—a rainfed pulse crop. Plant Soil Environ 53(2):81–88

    Article  CAS  Google Scholar 

  • Variath MT, Janila P (2017) Economic and academic importance of peanut. In: The peanut genome. Springer, Cham, pp 7–26

    Chapter  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Hoisington DA (2009) A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10(1):1–18

    Article  CAS  Google Scholar 

  • Vu JC, Allen LH Jr, Widodo W (2006) Leaf photosynthesis and Rubisco activity and kinetics of soybean, peanut, and rice grown under elevated atmospheric CO2, supraoptimal air temperature, and soil water deficit. Curr Top Plant Biol 7:27

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Song H, Li C, Li P, Li A, Guan H, Hou L, Wang X (2017) Genome-wide dissection of the heat shock transcription factor family genes in Arachis. Front Plant Sci 8:106

    PubMed  PubMed Central  Google Scholar 

  • Weatherley P (1950) Studies in the water relations of the cotton plant: I. The field measurement of water deficits in leaves. New Phytol 49(1):81–97

    Article  Google Scholar 

  • Wilson DM, Stansell JR (1983) Effect of irrigation regimes on aflatoxin contamination of peanut pods. Peanut Sci 10(2):54–56

    Article  Google Scholar 

  • Wustman BA, Oksanen E, Karnosky DF, Noormets A, Isebrands JG, Pregitzer KS, Hendry GR, Sober J, Podila GK (2001) Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environ Pollut 115(3):473–481

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Vanaja M, Reddy PR, Jyothilakshmi N, Maheswari M, Sharma KL, Venkateswarlu B (2011) Effect of elevated CO2 levels on some growth parameters and seed quality of groundnut (Arachis hypogaea L.). Indian J Agric Biochem 24(2):158–160

    CAS  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282(52):37794–37804

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98(22):12832–12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu CW, Zhu JG, Liu G, Zeng Q, Xie ZB, Pang J, Feng ZZ, Tang HY, Wang L (2008) Elevated CO2 concentration enhances the role of the ear to the flag leaf in determining grain yield of wheat. Photosynthetica 46(2):318–320

    Article  CAS  Google Scholar 

  • Zhu M, Monroe JG, Suhail Y, Villiers F, Mullen J, Pater D, Hauser F, Jeon BW, Bader JS, Kwak JM, Schroeder JI, McKay JK, Assmann SM (2016) Molecular and systems approaches towards drought-tolerant canola crops. New Phytol 210(4):1169–1189

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janila Pasupuleti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kadirimangalam, S.R., Bagudam, R., Mathew, A., Deshmukh, D., Pasupuleti, J. (2022). Breeding Groundnut Cultivars for Resilience to Climate Change Effects. In: Jha, U.C., Nayyar, H., Agrawal, S.K., Siddique, K.H.M. (eds) Developing Climate Resilient Grain and Forage Legumes. Springer, Singapore. https://doi.org/10.1007/978-981-16-9848-4_7

Download citation

Publish with us

Policies and ethics