Skip to main content
  • 219 Accesses

Abstract

Phthalate plasticizers, such as dioctyl phthalate (DOP), di(iso-octyl) phthalate (DIOP), di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), di(iso-butyl) phthalate (DIBP), and di(iso-nonyl) phthalate (DINP), have the earliest use, the best performance, the broadest application, and the most production globally. Phthalate compounds have achieved an annual production capacity of 5 million tons in China and a consumption capacity of 3.6 million tons, about 1/5 of the global numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staples CA, Peterson DR, Parkerton TF, et al. The environmental fate of phthalate esters: a literature review [J]. Chemosphere. 1997;35:667–749.

    Article  CAS  Google Scholar 

  2. Onorato TM, Brown PW, Morris P. Mono-(2-ethylhexyl)phthalate increase spermatocyte mitochondrial peroxiredoxin and cyclooxygenase [J]. J Androl. 2008;29:293–303.

    Article  CAS  PubMed  Google Scholar 

  3. Erkekoglu P, Rachidi W, Favier A, et al. Evaluation of cytotoxicity and oxidative DNA damaging effects of di(2-ethylhexyl)-phthalate (DEHP) and mono (2-ethylhexyl)-phthalate (MEHP) on MA-10 leyding cells and protection by selenium [J]. Toxicol Appl Pharmacol. 2010;248(1):52–62.

    Article  CAS  PubMed  Google Scholar 

  4. Hao YL, Zheng GY, Li QZ et al. Combined toxic effects of DBP and DEHP on sperm in male mice. Du W J. Informatics and Management Science I[M]. London: Springer, 2013, 204: 729–734.

    Google Scholar 

  5. Luo ZH, Huang XL, Ye DZ. Advances in research of biodegradation of environmental endocrine disruptors-phthalate esters’ [J]. Chin J Appl Environ Biol. 2008;14(6):890–7.

    CAS  Google Scholar 

  6. Piersma AH, Verhoefa A, Biesebeeka J. Developmental toxicity of butyl benzyl phthalate in the rat using a multiple dose study design [J]. Reprod Toxicol. 2000;14:417–25.

    Article  CAS  PubMed  Google Scholar 

  7. Singh S, Li SS. Phthalate: toxicogenomics and inferred human diseases [J]. Genomics. 2011;97(3):148–57.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy J. Additives for Plastics Handbook [M]. 2nd ed. New York: Elsevier; 2001.

    Google Scholar 

  9. Peter K. How dangerous are phthalate plasticizers? Integrated approach to toxicity based on metabolism, electron transfer, reactive oxygen species and cell signaling [J]. Med Hypotheses. 2010;74(4):626–8.

    Article  CAS  Google Scholar 

  10. Nass LI, Heiberger CA. Encyclopedia of PVC [M], vol 2, 2nd ed. New York: Marcel Dekker, 1988: 143–151.

    Google Scholar 

  11. Edenbaum J. Plastics additives and modifiers handbook [M]. New York: Van Nostrand Reinhold; 1992.

    Google Scholar 

  12. Haim J, Hyatt D. International plastics handbook [M]. 3rd ed. New York: Carl Hanser; 1995.

    Google Scholar 

  13. Wypych G. Plasticizer types. Wypych G. Handbook of Plasticizers [M]. Toronto: ChemTec Publishing, 2004.

    Google Scholar 

  14. Bonilla E, del Mazo J. Deregulation of the Sod1 and Nd1 genes in mouse fetal oocytes exposed to mono-(2-ethylhexyl) phthalate (MEHP) [J]. Reprod Toxicol. 2010;30(3):389–92.

    Article  CAS  Google Scholar 

  15. Kricheva YI, Kostov VD, Chichovska M. In vitro and in vivo studies of the concentration of plasticizer di (2-ethylhexyl) phthalate on the blood compatibility of plasticized poly(vinyl chloride) drain tubes [J]. Biomaterials. 1995;16(7):575–9.

    Article  Google Scholar 

  16. Li X, Nie XP, Pan DB, et al. Content and distribution characteristics of phthalates in cultured fish [J]. J Environ Health. 2008;25(3):202–5.

    CAS  Google Scholar 

  17. Xiao KE, Mo CH, Cai QY. Concentrations of PAEs in vegetable fidds of pearl river delta [J]. Sichuan Environ. 2012;34(3):49–55.

    Google Scholar 

  18. Kirkpatrick A. Some relations between molecular structure and plasticizing effect [J]. J Appl Phys. 1940;11:255–61.

    Article  CAS  Google Scholar 

  19. Aiken W, Alftey T, Janssen A, et al. Creep behavior of plasticized vinylite VYNW [J]. J Polym Sci. 1947;2:178–95.

    Article  CAS  Google Scholar 

  20. Wadey BL. An innovative plasticizer for sensitive applications [J]. J Vinyl Addit Technol. 2003;9(4):172–6.

    Article  CAS  Google Scholar 

  21. Daniels PH. A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction [J]. J Vinyl Addit Technol. 2009;15(4):219–23.

    Article  CAS  Google Scholar 

  22. Moreno R. The role of slip additives in tape casting technology. II: binders and plasticizers [J]. Am Ceram Soc Bull. 1992; 71(11):1647–57.

    Google Scholar 

  23. Rahman M, Brazel CS. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges [J]. Prog Polym Sci. 2004;29(12):1223–48.

    Article  CAS  Google Scholar 

  24. Jiang PP, Cong MB, Zhang DP et al. Accelerate the research and application of citrate ester, a new environmental friendly plasticizer in China [J]. Plast Add. 2003; 4(5):1–8.

    Google Scholar 

  25. Jin D. Production and application of green plasticizer tributyl citrate [J]. Chem Technol Mark. 2009;32(4):18–21.

    CAS  Google Scholar 

  26. Zhang L. Market status and prospect of citric acid ester plasticizer [J]. Plast Add. 2008; (1):10–1.

    Google Scholar 

  27. Adhvaryu A, Erhan SZ. Epoxidized soybean oil as a potential source of high-temperature lubricants [J]. Ind Crop Prod. 2002;15(3):247–54.

    Article  CAS  Google Scholar 

  28. Lu H, Bi YL, Liu YL. Development status and prospect of epoxy plasticizer [J]. Grain oil processing. 2010;6:26–30.

    Google Scholar 

  29. He SF. Discussion on quality and control of epoxy soybean oil [J]. Guangzhou Chem Ind. 2005;33(3):81–2.

    CAS  Google Scholar 

  30. Tang YF. Development and application of green environmental protection polyester plasticizer, [C]. Nanjing: Nanjing Publishing media Group; 2016.

    Google Scholar 

  31. Gosse C, Larson TM, Legrand PJP et al. Plasticized polyvinyl chloride: USA, US 7297738 [P]. 2007–11–20.

    Google Scholar 

  32. He YC. Discussion on plasticizer in food packaging materials [J]. Grand View Weekly. 2012;51(5):141–2.

    Google Scholar 

  33. Frados J. Plastics engineering handbook of the society of the plastics industry [M]. New York: Van Nostrand Reinhold; 1976.

    Google Scholar 

  34. Harper CA. Modern plastics handbook [M]. New York: McGraw-Hill Professional; 2000.

    Google Scholar 

  35. Hansjürgen S. International plastics handbook: for the technologist, engineer and user [M]. Munchen: Hans Publishers; 1987.

    Google Scholar 

  36. Földes E. Study of the effects influencing additive migration in polymers [J]. Angew Makromol Chem. 1998;261(1):65–76.

    Article  Google Scholar 

  37. Rahman M, Brazel CS. Ionic liquids: new generation stable plasticizers for poly (vinyl chloride) [J]. Polym Degrad Stab. 2006;91(12):3371–82.

    Article  CAS  Google Scholar 

  38. Jiang PP, Zhou YF. Environmental protection plasticizer [M]. Beijing: National Defence Industry Press; 2009.

    Google Scholar 

  39. Shi WC. New plasticizer cyclohexane dicarboxylic acid dialkyl ester [J]. Plastic Add. 2010;1:17–22.

    Google Scholar 

  40. Shi WC. Toxicity of plasticizers and related restrictions [J]. Plastic Add. 2010;3:43–7.

    Google Scholar 

  41. Brian LW. An innovative plasticizer for sensitive applications [J]. J Vinyl Addit Technol. 2003;9(4):172–6.

    Article  Google Scholar 

  42. Ding YJ, Diao YJ, Ma LX. The invention relates to a catalyst for the preparation of 1, 2-cyclohexane diformic acid ester: China, CN 200810224900. 9 [P]. 2008–10–24.

    Google Scholar 

  43. Ding Y J, Diao Y J, Ma L X. The invention discloses a method for preparing 1, 2-cyclohexane diformic acid ester: China, CN 200810224912. 1 [P]. 2008–10–27.

    Google Scholar 

  44. Li CC, Jiang PP, Dong YM. Synthesis of environmental protection plasticizer cyclohexane 1, 2-diisooctyl dicarboxylate [J]. Fine Chem. 2011;28(11):1124–8.

    CAS  Google Scholar 

  45. Jiang PP, Shen ML, Dong YM. Homogeneous catalytic synthesis of polyhexahydrophthalic anhydride diethylene glycol ester by titanium complex [J]. Chem Prog. 2011;30(3):634–7.

    CAS  Google Scholar 

  46. Zhao J, Xue M, Huang Y, et al. Hydrogenation of dioctyl phthalate over supported Ni catalysts [J]. Catal Commun. 2011;16(1):30–4.

    Article  CAS  Google Scholar 

  47. Sabatier P. How I have been led to the direct hydrogenation method by metallic catalysts [J]. Ind Eng Chem. 1926;18(10):1005–8.

    Article  CAS  Google Scholar 

  48. Hu SC, Chen YW. Partial hydrogenation of benzene: a review [J]. J Chin Inst Chem Eng. 1998;29(6):387–96.

    CAS  Google Scholar 

  49. Rothwell IP. A new generation of homogeneous arene hydrogenation catalysts [J]. Chem Commun. 1997;15:1331–8.

    Article  Google Scholar 

  50. Harman WD. The activation of aromatic molecules with pentaammine-osmium (II) [J]. Chem Rev. 1997;97(6):1953–78.

    Article  CAS  PubMed  Google Scholar 

  51. Stanislaus A, Cooper BH. Aromatic hydrogenation catalysis: A review [J]. Catal Rev: Sci Eng. 1994;36(1):75–123.

    Article  CAS  Google Scholar 

  52. Muetterties EL, Bleeke JR. Catalytic hydrogenation of aromatic hydrocarbons [J]. Acc Chem Res. 1979;12(9):324–31.

    Article  CAS  Google Scholar 

  53. Maitlis PM. (Pentamethylcyclopentadienyl) rhodium and-iridium complexes: approaches to new types of homogeneous catalysts [J]. Acc Chem Res. 1978;11(8):301–7.

    Article  CAS  Google Scholar 

  54. Moyes RB, Wells PB. The chemisorption of benzene [J]. Adv Catal. 1973;23:121–56.

    CAS  Google Scholar 

  55. Garnett JL. π-Complex intermediates in homogeneous and heterogeneous catalytic exchange reactions of hydrocarbons and derivatives with metals [J]. Catal Rev. 1972;5(1):229–67.

    Article  Google Scholar 

  56. Mccusker-Orth JE. Process for a cyclohexanedimethanol using raney metal catalysts: USA, US 6919489 [P]. 2005–07–19.

    Google Scholar 

  57. Sumner J, Gustafson BL. Hydrogenation of phthalic acids to cyclohexane-dicarboxylic acid: USA, US 6291706 [P]. 2001–09–18.

    Google Scholar 

  58. Gustafson B L, Kuo Y J, Ptice T W, et al. Low pressure process for the hydrogenation of dimethyl benzenedicarboxylates to the corresponding dimethyl cyclohexanedicarboxlates: USA, US 5286898 [P]. 1994–02–15.

    Google Scholar 

  59. Bohnen H, Klein T, Bergrath K. Process for preparing cyclohexanedicarboxylic esters: USA, US 6740773[P]. 2004–05–25.

    Google Scholar 

  60. Du X, Shi Y, Hu JY. Comparative study on liquid-phase hydrogenation activities of different substituted benzenes over Ru/AC catalysts [J]. J Sichuan Univ. 2004;41(2):384–8.

    CAS  Google Scholar 

  61. Chaeles ESJ, Gustafson BL. Hydrogenation of phthalic acids to cyclohexane-dicarboxylic acid: USA, US 6291706 [P]. 2001–09–18.

    Google Scholar 

  62. Toppinen S, Rantakyla TK, Salmi T, et al. Kinetics of the liquid phase hydrogenation of di- and trisubstituted alkylbenzenes over a nickel catalyst [J]. Ind Eng Chem Res. 1996;35(12):4424–33.

    Article  CAS  Google Scholar 

  63. Lu F, Liu J, Xu J. Fast aqueous/organic hydrogenation of arenes, olefins and carbonyl compounds by poly (N-vinylpyrrolidone)-Ru as amphiphilic microreactor system [J]. Adv Syn Catal. 2006; 348(7–8):857–61.

    Google Scholar 

  64. Lu F, Liu J, Xu J. Synthesis of PVP-Ru amphiphilic microreactors with Ru nanocatalysts and their application in the fast hydrogenation of unsaturated compounds in aqueous media [J]. J Mol Catal A: Chem. 2007;271(1):6–13.

    Article  CAS  Google Scholar 

  65. Hu SC, Chen YW. Effect of preparation on Ru-Zn ultrafine catalysts in partial hydrogenation of benzene [J]. Ind Eng Chem Res. 2001;40(14):3127–32.

    Article  CAS  Google Scholar 

  66. Li TX, Zhang XF. Study on amorphous Ultrafine Nickel alloy catalyst ii. Kinetics of Hydrogenation of benzene over Ni-B catalyst [J]. Chin J Catal. 1995; 16(5):399–402.

    Google Scholar 

  67. Hileman B. Panel concludes phthalate is safe [J]. Chem Eng News. 2001;79(26):12–5.

    Article  Google Scholar 

  68. Hileman B. FDA suggests replacing DEHP in plastics [J]. Chem Eng News. 2002;80(37):6–9.

    Article  Google Scholar 

  69. Wang B, Wang KZ, Gong YL. Research progress of environmental protection plasticizer [J]. China Plast Ind. 2013;41(5):12–5.

    Google Scholar 

  70. Ventrice P, Ventrice D, Russo E, et al. Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity [J]. Environ Toxicol Pharmacol. 2013;36(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  71. Sang L. Current situation and development of plasticizer industry [J]. Sci Technol Inform Devel Econ. 2009;19(27):124–5.

    Google Scholar 

  72. Shi WC, Zhao CY. Toxicity of plasticizers and related regulations [J]. Plastic Addit. 2007;2:46–51.

    Google Scholar 

  73. Feng SJ. Green plasticizer additives boost the green transformation of plastic artificial leather, plastic floor leather and plastic carpet [C]. Nanjing: Nanjing Publishing media Group; 2016.

    Google Scholar 

  74. Shi WC, Shi ZB, Jiang PP. Plasticizer and its application [M]. Beijing: Chemical Industrial Press; 2002.

    Google Scholar 

  75. Shi WC, Si JJ, Liu WG. Practical handbook for plasticizers [M]. Beijing: Chemical Industrial Press; 2009.

    Google Scholar 

  76. Jiang PP, Zhou YF. Environmental protection plasticizer [M]. Beijing: National Defence Industry Press, 2009.

    Google Scholar 

  77. Wang DR. Formulation process and application of plasticizer [M]. Beijing: Printing Industry Press; 2013.

    Google Scholar 

  78. Liu SC, Luo G, Han ML, et al. Characterization of the catalyst prepared by impregnation for selective hydrogenation of benzene to cyclohexene [J]. Chin J Catal. 2001;22:559–62.

    CAS  Google Scholar 

  79. Liu SC, Luo G, Xie YL. Study on Ru-Zn catalyst prepared by precipitation method for selective hydrogenation of benzene to cyclohexene [J]. Chin J Molec Catal. 2002;16(5):349–54.

    CAS  Google Scholar 

  80. Liu SC, Zhu BZ, Luo G, et al. Characterization of amorphous Ru-M-B/ZrO2 catalysts for partial hydrogenation of benzene to cyclohexene [J]. Chin J Molec Catal. 2002;16(3):217–22.

    CAS  Google Scholar 

  81. Liu SC, Guo YQ, Yang XL, et al. Kinetic equations for liquid-phase selective hydrogenation of benzene to cyclohexene [J]. Chin J Chem. 2003;24:41–6.

    Google Scholar 

  82. Liu SC, Wu YM, Wang Z, et al. Study of a Ru-La/ZrO2 catalyst prepared by precipitation method for selective hydrogenation of benzene to cyclohexene [J]. J Natur Gas Chem. 2005;14:226–32.

    CAS  Google Scholar 

  83. Si RJ, Liu SC, Liu ZY, et al. Study on Ru-M1-M2 catalyst prepared by precipitation method for selective hydrogenation of benzene to cyclohexene [J]. Chin J Molec Catal. 2005;19:141–5.

    Google Scholar 

  84. Liu SC, Liu ZY, Zhao SH, et al. Study on the nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene [J]. J Natur Gas Chem. 2006;15:319–26.

    Article  CAS  Google Scholar 

  85. Huang ZX, Liu ZY, Wu YM, et al. Selective hydrogenation of benzene to cyclohexene by a novel Ru-Zn catalyst [J]. Chin J Molec Catal. 2006;20(3):226–9.

    CAS  Google Scholar 

  86. Liu SC, Liu ZY, Liu YL, et al. Effect of lanthanum on performance of rub amorphous alloy catalyst for benzene selective hydrogenation [J]. J Rare Earths. 2006;24:456–60.

    Article  Google Scholar 

  87. Liu SC, Liu ZY, Wang Z, et al. A novel amorphous alloy Ru-La-B/ZrO2 catalyst with high activity and selectivity for benzene selective hydrogenation [J]. Appl Catal A: Gen. 2006;313:49–57.

    Article  CAS  Google Scholar 

  88. Liu SC, Liu ZY, Zhao SH, et al. Study on the amorphous alloy Ru-Fe-B/ZrO2 nanosized catalyst for benzene selective hydrogenation to cyclohexene [J]. J Natur Gas Chem. 2006;150:1–9.

    Google Scholar 

  89. Liu SC, Liu ZY, Wang Z, et al. Characterization and study on performance of the Ru-La-B/ZrO2 amorphous alloy catalysts for benzene selective hydrogenation to cyclohexene under pilot conditions [J]. Chem Eng J. 2008;139:157–64.

    Article  CAS  Google Scholar 

  90. Liu ZY, Sun HJ, Wang DB, et al. The modifiable character of a novel Ru-Fe-B/ZrO2 catalyst for benzene selective hydrogenation to cyclohexene [J]. Chin J Chem. 2010;28:1927–34.

    Article  CAS  Google Scholar 

  91. Liu ZY, Sun HJ, Wang DB, et al. Selective hydrogenation of benzene to cyclohexene over Ru-Zn catalyst with nanosized zirconia as dispersant [J]. Chin J Catal. 2010;21:150–2.

    Article  Google Scholar 

  92. Sun HJ, Guo W, Zhou XL, et al. Process in Ru-based amorphous alloy catalysts for benzene selective hydrogenation to cyclohexene [J]. Chin J Catal. 2011;32:1–16.

    Article  CAS  Google Scholar 

  93. Sun HJ, Zhang XD, Chen ZH, et al. Monolayer dispersed Ru-Zn catalyst and its performance in the selective hydrogenation of benzene to cyclohexene [J]. Chin J Catal. 2011;32:224–30.

    Article  CAS  Google Scholar 

  94. Sun HJ, Chen ZH, Guo W, et al. Effect of organic additives on the performance of nano-sized Ru-Zn catalyst [J]. Chin J Chem. 2011;29:369–73.

    Article  CAS  Google Scholar 

  95. Zhou XL, Sun HJ, Guo W, et al. Selective hydrogenation of benzene to m cyclohexene on Ru-based catalysts promoted with Mn and Zn [J]. J Natur Gas Chem. 2011;20:53–9.

    Article  CAS  Google Scholar 

  96. Sun HJ, Jiang HB, Li SH, et al. Selective hydrogenation of benzene to cyclohexene over nanocomposite Ru-Mn/ZrO2 catalysts [J]. Chin J Catal. 2013;34:684–94.

    Article  CAS  Google Scholar 

  97. Sun HJ, Pan YJ, Li SH, et al. Selective hydrogenation of benzene to cyclohexene over Ce-promoted Ru catalysts [J]. J Eng Chem. 2013;22:710–6.

    CAS  Google Scholar 

  98. Sun HJ, Pany J, Jiang HB, et al. Effect of transition metals (Cr, Mn, Fe Co, Ni, Cu and Zn) on the hydrogenation properties of benzene over Ru-based catalyst [J]. Appl Catal A: Gen. 2013;464–465:1–9.

    Article  CAS  Google Scholar 

  99. Sun HJ, Dong YY, Li SH, et al. The role of La in improving the selectivity to cyclohexene of Ru catalyst for hydrogenation of benzene [J]. J Molec Catal A: Chem. 2013;368–369:119–24.

    Article  CAS  Google Scholar 

  100. Sun HJ, Jiang HB, Li SH et al. Effect of alcohols as additives on the performance of a nano-sized Ru-Zn(2.8%) catalyst for selective hydrogenation of benzene to cyclohexene[J]. Chem Eng J. 2013; 218:415–24.

    Google Scholar 

  101. Sun HJ, Wang HX, Jiang HB, et al. Effect of (Zn(OH)2)3(ZnSO4)(H2O)5 on the performance of Ru-Zn catalyst for benzene selective hydrogenation to cyclohexene [J]. Appl Catal A: Gen. 2013;450:160–8.

    Article  CAS  Google Scholar 

  102. Liu Z Y, Liu SC, Li ZJ. Catalytic technology of selective hydrogenation of benzene to cyclohexene [M]. Beijing: science press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z. (2022). Introduction. In: Green Catalytic Hydrogenation of Phthalate Plasticizers. Springer, Singapore. https://doi.org/10.1007/978-981-16-9789-0_1

Download citation

Publish with us

Policies and ethics