Skip to main content

The Making of a Humanoid Bot Using Electromagnetic Antenna and Sensors

  • Chapter
  • First Online:
Biological Antenna to the Humanoid Bot

Abstract

Information regarding wireless communication enhances the number of constitutes devices like base stations and other devices. High frequency (millimeter wave, 6–100 GHz) leaves a health impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 27 March 2022

    .

References

  1. Simkó M, Mattsson MO (2019) 5G wireless communication and health effects—A pragmatic review based on available studies regarding 6–100 GHz. Int J Environ Res Public Health 16(18):3406

    Google Scholar 

  2. Larik RSA, Mallah GA, Talpur MMA, Suhag AK, Larik FA (2016) Effect of wireless device on human body. J Comput Sci Syst Biol 9:4. https://doi.org/10.4172/jcsb.1000229

    Article  Google Scholar 

  3. Politanski P, Bortkiewicz A, Zmyslony M (2016) Effects of radio- and microwaves emitted by wireless communication devices on the functions of the nervous system selected elements. https://doi.org/10.13075/mp.5893.00343

  4. Havas M (2013) Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health 28(2–3):75–84. https://doi.org/10.1515/reveh-2013-0004

  5. Awada et al (2018) Simulation of the effect of 5G cell phone radiation on human brain. In: IEEE international multidisciplinary conference on engineering technology (ICMET)

    Google Scholar 

  6. Indulski et al (1997) The present state of knowledge concerning the effect of electromagnetic fields of 50/60 Hz on the circulatory system and the autonomic nervous system. Med Pr 48(4):441–451

    Google Scholar 

  7. Russell CL (2018) 5 G wireless telecommunications expansion: public health and environmental implications. Environ Res 165:484–495

    Google Scholar 

  8. Falcioni et al (2018) Report of final results regarding brain and heart tumors in Sprague—Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ Res 165:496–503

    Google Scholar 

  9. Libet B (2004) Mind time: the temporal factor in consciousness. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  10. Loftus EF (1997) Creating false memories. Sci Am 277:70–75

    Google Scholar 

  11. Beggs JM, Timme N (2012) Being critical of criticality in the brain. Front Fractal Physiol

    Google Scholar 

  12. Bandyopadhyay A (2020a) Nanobrain: the making of an artificial brain from a time crystal. Taylor & Francis Inc. Imprint CRC Press Inc., Bosa Roca, United States, 9 336. ISBN 10-1439875499. ISBN 13-9781439875490. https://doi.org/10.1201/9780429107771

  13. Carroll SM (2017) Why Boltzmann brains are bad. arXiv:1702.00850

  14. Boddy KK, Carroll SM (2013) Can the higgs boson save us from the menace of the boltzmann brains?. arXiv:1308.4686

  15. Reddy S et al (2018) A brain-like computer made of time crystal: could a metric of prime alone replace a user and alleviate programming forever? Stud Comput Intell 761:1–44

    Google Scholar 

  16. Singh P et al (2020) A self-operating time crystal model of the human brain: can we replace entire brain hardware with a 3D fractal architecture of clocks alone? Information 11(5):238

    Google Scholar 

  17. Götze W (2008) Dynamics of glass forming liquids. Oxford University, Press

    MATH  Google Scholar 

  18. Palmer RG (1982) Broken ergodicity. Adv Phys 31(6):669; Bibcode:1982 Ad Phy 31:669P. https://doi.org/10.1080/00018738200101438

  19. Wheeler J (1996) At home in the universe. AIP Press

    Google Scholar 

  20. Gardner JN (2005) The physical constants as biosignature: an anthropic retrodiction of the selfish biocosm hypothesis. Int J Astrobiol

    Google Scholar 

  21. Hawking S, Hertog T (2002) Why does inflation start at the top of the hill? hep-th/0204212

    Google Scholar 

  22. Weinberg S (1999) A designer universe? In: New York review of books

    Google Scholar 

  23. Bandyopadhyay A, Ghosh S, Fujita D (2020b) Universal Geometric-musical language for big data processing in an assembly of clocking resonators, JP-2017-150171, 8/2/2017: World patent, WO 2019/026983; US Patent App. 16/635,900

    Google Scholar 

  24. Schmitz D (2018) Derivation of fiber orientations from oblique views through human brain sections in 3D-polarized light imaging. Front Neuroanat

    Google Scholar 

  25. Saxena K et al (2020) Fractal, scale free electromagnetic resonance of a single brain extracted microtubule nanowire, a single tubulin protein and a single neuron. Fractal Fract 4(2):11

    Google Scholar 

  26. Gardner J (2002) Assessing the computational potential of the eschaton: testing the selfish biocosm hypothesis. J Br Interplanet Soc 55(7/8):285–288

    Google Scholar 

  27. David K, Alexandre P (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. TRENDS Neurosci 27(12)

    Google Scholar 

  28. Doya K et al (2007) Bayesian brain: probabilistic approaches to neural coding, 1edn. The MIT Press

    Google Scholar 

  29. Friston K (2010) The free energy principle: a unified brain theory? Nat Rev Neurosci 11. https://doi.org/10.1038/nrn2787

  30. Di Leva A (2016) The fractal geometry of the brain. Springer Science+Business Media, New York, Springer, New York, NY. 978-1-4939-3993-0. https://doi.org/10.1007/978-1-4939-3995-4

  31. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167

    Google Scholar 

  32. Hurdal MK, Stephenson K (2009) Discrete conformal methods for cortical brain flattening. Neuroimage 45(1):S86–S98

    Google Scholar 

  33. Nicolelis M, Cicurel R (2015) The relativistic brain: how it works and why it cannot be simulated by a Turing machine, 1.1 edn. Kios Press, Amazon Asia-Pacific Holdings Private Limited

    Google Scholar 

  34. Poznanski RR (2015) The relativistic brain by Ronald Cicurel and Miguel L. Nicolelis. J Integr Neurosc 14(03):431–435

    Google Scholar 

  35. Lanzalaco F, Zia W (2009) Dipole Neurology an electromagnetic multipole solution to brain structure, function and abnormality. Wellcome trust, Hinxton, Cambridge, UK

    Google Scholar 

  36. Nobili R (1985) Schrödinger wave holography in brain cortex. Phys Rev A 32:3618

    Google Scholar 

  37. Beck F, Eccles J (1992) Quantum aspects of brain activity and the role of consciousness. Proc Natl Acad Sci USA 89:11357–11361

    Google Scholar 

  38. Hameroff SR, Penrose R (1996) Conscious events as orchestrated spacetime selections. J Conscious Stud 3(1):36–53

    Google Scholar 

  39. Fröhlich H (1968) Long range coherence and energy storage in biological systems. Int J Quantum Chem 2:641–649

    Google Scholar 

  40. Bartol TM Jr, et al (2015) Nanoconnectomic upper bound on the variability of synaptic plasticity. eLife 4:e10778

    Google Scholar 

  41. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    Google Scholar 

  42. Singh P et al (2021a) A space-time-topology-prime, stTS metric for a self-operating mathematical universe uses dodecanion geometric algebra of 2–20 D complex vectors. In: Ray K, Roy KC, Toshniwal SK, Sharma H, Bandyopadhyay A (eds) Proceedings of international conference on data science and applications. Lecture notes in networks and systems, vol 148. Springer, Singapore

    Google Scholar 

  43. Singh P et al (2021b) Quaternion, octonion to dodecanion manifold: stereographic projections from infinity lead to a self-operating mathematical universe. In: Singh P, Gupta RK, Ray K, Bandyopadhyay A (eds) Proceedings of international conference on trends in computational and cognitive engineering. Advances in intelligent systems and computing, vol 1169. Springer, Singapore

    Google Scholar 

  44. Nikolić D (2017) Why deep neural nets cannot ever match biological intelligence and what to do about it? Int J Autom Comput 14:532. https://doi.org/10.1007/s11633-017-1093-8

    Article  Google Scholar 

  45. Bandyopadhyay A, Ghosh S, Fujita D (2020c) Human brain like intelligent decision-making machine; JP-2017-150173; 8/2/2017; World patent WO 2019/026984; US Patent App. 16/635,892

    Google Scholar 

  46. Cao TY, Schweber SS (1993) The conceptual foundation and the philosophical aspect of the renormalization theory. Synthese 93:33–108

    MathSciNet  Google Scholar 

  47. Feynman RP (1949) Space-time approach to quantum electronic. Phys Rev 76:769

    MathSciNet  MATH  Google Scholar 

  48. Singh P, Ray K, Fujita D, Bandyopadhyay A (2019) Complete dielectric resonator model of human brain from MRI data: a journey from connectome neural branching to single protein. In: Ray K, Sharan S, Rawat S, Jain S, Srivastava S, Bandyopadhyay A (eds) Engineering vibration, communication and information processing, 1st edn, vol 478. Springer, Singapore, India, pp 717–733

    Google Scholar 

  49. Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Google Scholar 

  50. Hurdal MK et al (1999) Quasi-conformally flat mapping the human cerebellum. In: Taylor C, Colchester A (eds) Medical image computing and computer-assisted intervention—MICCAI'99 of lecture notes in computer science, vol 1679. Springer, Berlin, pp 279–286

    Google Scholar 

  51. Gao Z et al (2018) A cortico-cerebellar loop for motor planning. Nature 563(7729):113–116. https://doi.org/10.1038/s41586-018-0633-x

    Article  Google Scholar 

  52. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Google Scholar 

  53. Buzsáki G, Bragin A, Chrobak JJ, Nádasdy Z, Sík A, Ylinen A (1994a) Oscillatory and intermittent synchrony in the hippocampus: relevance for memory trace formation. In: Buzsàki G, Llinás RR, Singer W, Berthoz A, Christen Y (eds) Temporal coding in the Brain. Springer, Berlin, pp 145–172

    Google Scholar 

  54. Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, Moser MB (2005) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309:619–623

    Google Scholar 

  55. Ferbinteanu J, Shapiro ML (2003) Prospective and retrospective memory coding in the hippocampus. Neuron 40:1227–1239

    Google Scholar 

  56. Kröger H (1997) Proposal for an experiment to measure the Hausdorff dimension of quantum-mechanical trajectories. Phys Rev A 55(2):951–66. quant-ph/9702013

    Google Scholar 

  57. Wallenstein GV, Eichenbaum H, Hasselmo ME (1998) The hippocampus as an associator of discontinuous events. Trends Neurosci 21:317–323

    Google Scholar 

  58. Jonas P, Bischofberger J, Fricker D, Miles R (2004) Interneuron diversity series: fast in, fast out—Temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 27:30–40

    Google Scholar 

  59. Buño W Jr, Velluti JC (1977) Relationships of hippocampal theta cycles with bar pressing during self-stimulation. Physiol Behav 19:615–621

    Google Scholar 

  60. Stanley SA et al (2016) Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531:647–650

    Google Scholar 

  61. Schahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, Oxford

    Google Scholar 

  62. Toga AW (2012) Mapping of human connectome. Neurosurgery 71(1):1–5

    Google Scholar 

  63. Glasser MF (2016) The human connectome project’s neuroimaging approach. Nat Neurosci 19(9):1175–1187

    Google Scholar 

  64. van Essen DC (2015) The human connectome in health and psychopathology. World Psychiatry 14(2):154–161

    Google Scholar 

  65. Ye et al (2015) The intrinsic geometry of the human brain connectome. Brain Inform 2(4):197–210

    Google Scholar 

  66. Shi Y, Toga AW (2017) Connectome imaging for mapping brain pathways. Mol Psychiatry 22:1230–1240

    Google Scholar 

  67. Basser et al (2000) In vivo fiber tractography using DT-MRI data. https://doi.org/10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O

  68. Reckfort J (2015) A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI. Front Neuroanat

    Google Scholar 

  69. Axer M et al (2011) High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinform 5:34

    Google Scholar 

  70. Menzel M (2014) Simulation and modeling for reconstruction of nerve fibers in the brain by 3D polarized light imaging

    Google Scholar 

  71. Nolden et al (2019) Tracing of nerve fibers through brain regions of fiber crossings in reconstructed 3D-PLI volumes. Bildverarbeitung für die Medizin, pp 62–67

    Google Scholar 

  72. Hein KHM (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8:1349

    Google Scholar 

  73. Reimann et al (2015) An algorithm to predict the connectome of neural microcircuits. Front Comput Neurosci 9:120

    Google Scholar 

  74. Bullmore BD, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural function system. Nat Rev Neurosci 10:186–198

    Google Scholar 

  75. Leergaard TB, Hilgetag CC, Sporns O (2012) Mapping of connectome: multi-level analysis of brain connectivity. Front Neuroinform |. https://doi.org/10.3389/fninf.2012.00014

  76. Mwangi B, Tian TS, Soares JC (2014) A review of feature reduction technique in neuroimaging. Neuroinformatics 12(2):229–244

    Google Scholar 

  77. Robert et al (2015) The contribution of geometry to the human connectome. Neuroimage. Article in press

    Google Scholar 

  78. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    Google Scholar 

  79. Chen et al (2017) Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency. https://doi.org/10.1371/journal.pcbi.1005776

  80. Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311–317

    Google Scholar 

  81. Bota M, Sporns O, Swanson LW (2015) Architecture of the cerebral cortical association connectome underlying cognition. Proc Natl Acad Sci U S A 112:E2093-2101

    Google Scholar 

  82. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Google Scholar 

  83. Shah et al (2018) Age related changes in topological properties of brain functional network and structural connectivity. Front Neurosci 12:318

    Google Scholar 

  84. Budd JML, Kisvarday ZF (2012) Communication and wiring in the cortical connectome. Front Neuroanat 6:42

    Google Scholar 

  85. Horton JC, Adams DL (2005) The cortical column: a structure without a function. Philos Trans R Soc Lond B Biol Sci 360(1456):837–862

    Google Scholar 

  86. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(Pt 4):701–722

    Google Scholar 

  87. Haueis P (2016) The life of the cortical column: opening the domain of functional architecture of the cortex (1955–1981). Hist Philos Life Sci 38(3):2

    Google Scholar 

  88. Roe AW (2019) Columnar connectome: toward a mathematics of brain function. Netw Neurosci 3(3):779–791

    Google Scholar 

  89. Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125(Pt 5):935–951

    Google Scholar 

  90. Douglas RJ, Martin KA (1991) A functional microcircuit for cat visual cortex. J Physiol 440:735–769

    Google Scholar 

  91. Yumiko Y, Jami LM Dantzker, Edward MC (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873

    Google Scholar 

  92. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde (in German). Johann Ambrosius Barth, Leipzig

    Google Scholar 

  93. Garey LJ (2006) Brodmann’s localisation in the cerebral cortex. Springer, New York. ISBN 978-0387-26917-7

    Google Scholar 

  94. Gawne TJ, Richmond BJ (1993) How independent are the messages carried by adjacent inferior temporal cortical neurons? J Neurosci 13:2758–2771

    Google Scholar 

  95. Noctor S, Martinez-Cerdeno V, Ivic L, Kriegstein A (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Rev Neurosci 7:136–144

    Google Scholar 

  96. Ren J, Momose-Sato Y, Sato K, Greer JJ (2006) Rhythmic neuronal discharge in the medulla and spinal cord of fetal rats in the absence of synaptic transmission. J Neurophysiol 95(1):527–534

    Google Scholar 

  97. Mackinnon SE, Yee A, Ray WZ (2012) Nerve transfers for the restoration of hand function after spinal cord injury. J Neurosurg 117(1):176–185

    Google Scholar 

  98. Jalife J, Moe GK (1979) Phasic effects of vagal stimulation on pacemaker activity ofthe isolated sinus node of the young cat. Cire Res 45:595–607

    Google Scholar 

  99. Raslau FD et al (2015) Memory part 3: the role of the fornix and clinical cases. Am J Neuroradiol 36(9):1604–1608. https://doi.org/10.3174/ajnr.A4371

    Article  Google Scholar 

  100. McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory? Psychol Rev 102:419–457

    Google Scholar 

  101. Miller R (1989) Cortico-hippocampal interplay: self-organizing phase-locked loops for indexing memories. Psychobiology 17:115–128

    Google Scholar 

  102. Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357:1695–1708

    Google Scholar 

  103. Steriade M, Deschenes M (1984) The thalamus as a neuronal oscillator. Brain Res Rev 8:1–63

    Google Scholar 

  104. Penttonen M, Buzsáki G (2003) Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst. 48:1–8

    Google Scholar 

  105. Reinagel P, Reid C (2000) Temporal coding of visual information in the thalamus. J Neurosci 20:5392–5400

    Google Scholar 

  106. Morison RS, Basset DL (1945) Electrical activity of the thalamus and basal ganglia in decorticate cats. J Neurophysiol 8:309–314

    Google Scholar 

  107. Hawkins J, Ahmad S, Cui Y (2017) Why does the neocortex have layers and columns, a theory of learning the 3D structure of the world. https://doi.org/10.1101/162263

  108. Tuthill JC, Azin E (2018) Proprioception. Primer 28(5):PR194–PR203

    Google Scholar 

  109. Arshavsky Y, Berkinblit MB, Kovalev SA, Chailakhyan M (1964) Periodic transformation of rhythm in a nerve fiber with gradually changing properties. Biofizika 9:365–371

    Google Scholar 

  110. Ghosh S et al (2014) Design and operation of a brain like computer: a new class of frequency-fractal computing using wireless communication in a supramolecular organic, inorganic systems. Information 5:28–99

    Google Scholar 

  111. Sahu S et al (2013) Multi-level memory-switching properties of a single brain microtubule. Appl Phys Lett 102:123701

    Google Scholar 

  112. Chudacek Z (1989) Changes in the thomographic picture of hands of healthy persons after vibrations of 125 Hz. Cech Radio 43(2):98–101

    Google Scholar 

  113. Jebur AA, Abed AY (2013) Effect of vibrations transmitted through hand on human body and blood pressure. Int J Adv Eng Sci Technol 3:47–56

    Google Scholar 

  114. Lythgo N, Eser P, Groot P, Galea M (2008) Whole-body vibration dosage alters leg blood flow. Clin Physiol Funct Imaging 29(1):53–59

    Google Scholar 

  115. Wang L, Zhao M, Ma J, Tian S, Xiang P, Yao W, Fan Y (2014) Med Eng Phys 36(11):1443–1448

    Google Scholar 

  116. Osawa Y, Oguma Y (2001) Effects of whole body vibration on resistance training for untrained adults. J Sports Sci Med 10(2):328–337

    Google Scholar 

  117. Cochrane DJ, Stannard SR, Firth EC, Rittweger J (2010) Comparing muscle temperature during static and dynamic squatting with and without whole-body vibration. Clin Physiol Funct Imaging 30(4):223–229

    Google Scholar 

  118. Lohman EB, Petrofsky JS, Maloney-Hinds C, Betts-Schwab H, Thorpe D (2007) The effect of whole body vibration on lower extremity skin blood flow in normal subjects. Med Sci Monit Int Med J Exp Clin Res 13:CR71–C76

    Google Scholar 

  119. Button C, Anderson N, Bradford C, Cotter JD, Ainslie PN (2007) The effect of multidirectional mechanical vibration on peripheral circulation of humans. Clin Physiol Funct Imaging 27(4):211–216

    Google Scholar 

  120. Nahriniak V et al (2019) Studying changes of the effective radius in blood vessels after exposure of lower extremities to periodical mechanical vibrations. J Biomed Phys Eng 9(6):673–678

    Google Scholar 

  121. Salvendy G (2012) Handbook of human factors and ergonomics, 4th edn. Wiley, New Jersey

    Google Scholar 

  122. Dykes RW (1983) Parallel processing of somatosensory information: a theory. Brain Res Rev 6:47–115; Martin JH (2003) Neuroanatomy: text and atlas. McGraw-Hill, New York

    Google Scholar 

  123. Braak H, Braak E, Yilmazer D, Bohl J (1996) Functional anatomy of human hippocampal formation and related structures. J Child Neurol 11:265–275

    Google Scholar 

  124. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661

    Google Scholar 

  125. Tyng CM, Amin HU, Saad MNM, Malik AS (2017) The influences of emotion on learning and memory. Front Psychol 8:1454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Ray, K., Bandyopadhyay, A. (2022). The Making of a Humanoid Bot Using Electromagnetic Antenna and Sensors. In: Biological Antenna to the Humanoid Bot. Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-9677-0_5

Download citation

Publish with us

Policies and ethics