Skip to main content

Is Coronavirus Pushing Humanity Towards an Evolutionary Jump as It Did Long Back When It Initiated Making a Brain?

  • Chapter
  • First Online:
Biological Antenna to the Humanoid Bot

Part of the book series: Studies in Rhythm Engineering ((SRE))

  • 319 Accesses

Abstract

Thirty thousand years back, when humans were still primitives, the viruses were more life-like; they could regenerate themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61(2):99–111. https://doi.org/10.1002/iub.146

    Article  Google Scholar 

  2. Nelson MI, Holmes EC (2007) The evolution of epidemic influenza. Nat Rev Genet 8:196–205. https://doi.org/10.1038/nrg2053

    Article  Google Scholar 

  3. Andersson SGE et al (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–143. https://doi.org/10.1038/24094

    Article  Google Scholar 

  4. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    Google Scholar 

  5. Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the archaea: a unifying view. Nat Rev Microbiol 4:837–848. https://doi.org/10.1038/nrmicro1527

    Article  Google Scholar 

  6. Brattas PL et al (2017) TRIM28 controls a gene regulatory network based on endogenous retroviruses in human neural progenitor cells. Cell Rep 18(1–3):1–11

    Google Scholar 

  7. Vallender EJ, Mekel-Bobrov N, Lahn BT (2008) Genetic basis of human brain evolution. Trends Neurosci 31:637–644

    Google Scholar 

  8. Hogue MJ et al (1955) The effect of poliomyelitis virus on human brain cells in tissue culture. J Exp Med 102(1):29–36

    Google Scholar 

  9. Paterson RW et al (2020) The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143(10):3104–3120. https://doi.org/10.1093/brain/awaa240

    Article  Google Scholar 

  10. Ladecola C et al (2020) Effects of COVID-19 on the nervous system. Cell 183(1):16–27

    Google Scholar 

  11. Moriguchi T et al (2020) A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 94:55–58

    Google Scholar 

  12. Zanin L et al (2020) SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir 162:1491–1494

    Google Scholar 

  13. Bryce C et al (2020). Preprint at medRxiv. https://doi.org/10.1101/2020.05.18.20099960

    Article  Google Scholar 

  14. Song E et al (2020). Preprint at bioRxiv. https://doi.org/10.1101/2020.06.25.169946

    Article  Google Scholar 

  15. Al Saiegh F et al (2020) Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry 91:846–848

    Google Scholar 

  16. Chenga Q et al (2020) Infectivity of human coronavirus in the brain. E Bio Med 56:102799

    Google Scholar 

  17. Dudas G, Carvalho LM, Rambaut A, Bedford T (2018) MERS-CoV spillover at the camel-human interface. Elife 7:e31257

    Google Scholar 

  18. Brauner JM, Mindermann S, Sharma M et al (2020) Inferring the effectiveness of government interventions against COVID-19. Science. https://doi.org/10.1126/science.abd9338

  19. Zhou P et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Google Scholar 

  20. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E (2020) COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 26:729–734

    Google Scholar 

  21. Jaimes JA, Millet JK, Whittaker GR, Proteolytic Cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 Site. I Science 23:101212. s. https://doi.org/10.1016/j.isci.2020.101212

  22. Corman VM, Muth D, Niemeyer D, Drosten C (2018) Hosts and sources of endemic human coronaviruses. Adv Virus Res 100:163–188

    Google Scholar 

  23. Guarner J (2020) Three emerging coronaviruses in two decades. Am J Clin Pathol 153:420–421

    Google Scholar 

  24. Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R (2020) A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proof reading and final capping. Cells 9:1267

    Google Scholar 

  25. Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X et al (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B 10:1228–1238

    Google Scholar 

  26. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M et al (2020) Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527:618–623

    Google Scholar 

  27. Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil SMC et al (2020) Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat Struct Mol Biol 27:925–933

    Google Scholar 

  28. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506

    Google Scholar 

  29. Astuti I, Ysrafil (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabet Metab Syndr 14:407–412

    Google Scholar 

  30. Tang X, Wu C, Li X, Song Y, Yao X, Wu X et al (2020) On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 7:1012–1023

    Google Scholar 

  31. Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16:69

    Google Scholar 

  32. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S et al (2020) Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 1e8

    Google Scholar 

  33. Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol

    Google Scholar 

  34. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–292

    Google Scholar 

  35. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263

    Google Scholar 

  36. Ortega JT, Serrano ML, Pujol FH, Rangel HR (2020) Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in-silico analysis. EXCLI J 19:410–417

    Google Scholar 

  37. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–220

    Google Scholar 

  38. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A et al (2020) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 117:11727–11734

    Google Scholar 

  39. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S et al (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30:343–355

    Google Scholar 

  40. Zhang S, Qiao S, Yu J, Zeng J, Shan S, Tian L, Lan J, Zhang L, Wang XJNC (2021) Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution. Nat Commun 12:1–12

    Google Scholar 

  41. Bajaj A, Purohit HJ (2020) Understanding SARS-CoV-2: genetic diversity, transmission and cure in human. Indian J Microbiol 1

    Google Scholar 

  42. Brufsky A (2020) Distinct viral clades of SARS-CoV-2: implications for modeling of viral spread. J Med Virol

    Google Scholar 

  43. Islam MR et al (2020) Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci Rep 10:1–9

    Google Scholar 

  44. Wang C et al (2020) The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol 92:667–674

    Google Scholar 

  45. Yuan M, Wu NC, Zhu X, Lee C-CD, So RTY, Lv H et al (2020) A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARSCoV. Science (80):368, 630–633

    Google Scholar 

  46. Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA et al (2018) Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci Rep 8:1–11

    Google Scholar 

  47. Sorokina M, Teixeira JMC, Barrera-Vilarmau S, Paschke R, Papasotiriou I, Rodrigues JP et al (2020) Structural models of human ACE2 variants with SARS-CoV-2 Spike protein for structure-based drug design. Sci Data. 7:1–10

    Google Scholar 

  48. Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD et al (2020) SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 183:1043–1057

    Google Scholar 

  49. Banner LR, Lai MM (1991) Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology 185:441–445

    Google Scholar 

  50. Bande F, Arshad SS, Omar AR, Hair-Bejo M, Mahmuda A, Nair V (2017) Global distributions and strain diversity of avian infectious bronchitis virus: a review. Anim Health Res Rev 18(1):70–83

    Google Scholar 

  51. Gandon S, Day T (2008) Evidences of parasite evolution after vaccination. Vaccine. https://doi.org/10.1016/j.vaccine.2008.02.007

    Article  Google Scholar 

  52. Gandon S, Mackinnon MJ, Nee S, Read AF (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature 414(6865):751–756

    Google Scholar 

  53. García de Alcañíz J, López-Rodas V, Costas EJM (2021) Sword of damocles or choosing well. In: Population genetics sheds light into the future of the COVID-19 pandemic and SARS-CoV-2 new mutant strains

    Google Scholar 

  54. Xu J, Zhao S, Teng T, Absalla EA, Zhu W, Xie L et al (2020) Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 12(2):244

    Google Scholar 

  55. Wan Y, Shang J, Graham R, Baric RS, Li FJ (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. https://doi.org/10.1128/JVI.00127-20

  56. Singh P, Ocampo M, Lugo JE, Doti R, Faubert J, Rawat S et al (2018) Fractal and periodical biological antennas: hidden topologies in DNA, wasps and retina in the eye. In: Ray K, Pant M, Bandyopadhyay A (eds) Soft computing applications. Springer, Singapur, pp 113–130

    Google Scholar 

  57. Ghosh S, Chatterjee S, Roy A, Ray K, Swarnakar S, Fujita D (2015) Resonant oscillation language of a futuristic nano-machine-module: eliminating cancer cells & Alzheimer Aβ plaques. Curr Top Med Chem 15(6):534–541

    Google Scholar 

  58. Wiltshire MCK, Hajnal JV, Pendry JB, Edwards DJ, Stevens CJ (2003) Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires. Opt Express 11(7):709–715

    Google Scholar 

  59. Rehman HA et al (2021) Comprehensive comparative genomic and microsatellite analysis of SARS, MERS, BAT‐SARS, and COVID‐19 coronaviruses. J Med Virol

    Google Scholar 

  60. Bandyopadhyay A, Sahu S, Fujita D, Wakayama Y (2010) A new approach to extract multiple distinct conformers and co-existing distinct electronic properties of a single molecule by point-contact method. Phys Chem Chem Phys 12(9):2198–2208

    Google Scholar 

  61. Bandyopadhyay A, Wakayama Y (2007) Origin of negative differential resistance in molecular junctions of Rose Bengal. Appl Phys Lett 90(2):023512

    Google Scholar 

  62. Ghosh S, Sahu S, Agrawal L, Shiga T, Bandyopadhyay A (2016) Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell. J Integr Neurosci 15(04):403–433

    Google Scholar 

  63. Ghosh S, Sahu S, Fujita D, Bandyopadhyay A (2014b) Design and operation of a brain like computer: a new class of frequency-fractal computing using wireless communication in a supramolecular organic, inorganic systems. Information 5:28–99

    Google Scholar 

  64. Saxena K, Singh P, Sahoo P, Sahu S, Ghosh S, Ray K et al (2020) Fractal, scale free electromagnetic resonance of a single brain extracted microtubule nanowire, a single tubulin protein and a single neuron. Fractal Fract. https://doi.org/10.3390/fractalfract4020011

    Article  Google Scholar 

  65. Singh P, Ray K, Fujita D, Bandyopadhyay A (2019) Complete dielectric resonator model of human brain from MRI data: a journey from connectome neural branching to single protein. In: Ray K, Sharan S, Rawat S, Jain S, Srivastava S, Bandyopadhyay A (eds) Lecture notes in electrical engineering. Springer, Singapore, pp 717–733

    Google Scholar 

  66. Ghosh S, Dutta M, Sahu S, Fujita D, Bandyopadhyay A (2014a) Nano molecular-platform: a protocol to write energy transmission program inside a molecule for bio-inspired supramolecular engineering. Adv Func Mater 24:1364–1371

    Google Scholar 

  67. Ghosh S, Fujita D, Bandyopadhyay A (2015) An organic jelly made fractal logic gate with an infinite truth table. Sci Rep 5:11265

    Google Scholar 

  68. Reddy S, Sonkar D, Singh P, Saxena K, Singh S, Chhajed R et al. (2018) A Brain-like computer made of time crystal: could a metric of prime alone replace a user and alleviate programming forever? in Studies in computational Intelligence, 761, 1–44. Springer Nature Singapore Pvt. Ltd, ISBN: 978-981-10-8048-7; https://doi.org/10.1007/978-981-10-8049-4_1

    Google Scholar 

  69. Winfree A (1977) Biological rhythm research 8, 1; the geometry of biological time, 2nd edn. Springer, New York

    Google Scholar 

  70. Yao NY, Potter AC, Potirniche ID, Vishwanath A (2017) Discrete time crystals: rigidity, criticality, and realizations. Phys Rev Lett 118:030401–030406

    MathSciNet  Google Scholar 

  71. Zhang Z, Hess PW, Kyprianidis A, Becker P, Lee A, Smith J et al (2017) Observation of a discrete time crystal. Nature 54:217–220

    Google Scholar 

  72. Bruinsma RF, Gelbart WM, Reguera D, Rudnick J, Zandi R et al (2003) Viral self-assembly as thermodynamic process. Phys Rev Lett 90(24):248101–248111

    MATH  Google Scholar 

  73. Bandyopadhyay A (2020a) Nanobrain: the making of an artificial brain from a time crystal. Taylor & Francis Inc. Imprint CRC Press Inc., Bosa Roca, United States, p 336. ISBN 10-1439875499. ISBN 13-9781439875490. https://doi.org/10.1201/9780429107771

  74. Bandyopadhyay A, Ghosh S, Fujita D (2020b) Universal geometric-musical language for big data processing in an assembly of clocking resonators, JP-2017-150171, 8/2/2017: World patent, WO 2019/026983; US Patent App. 16/635,900

    Google Scholar 

  75. Bandyopadhyay A, Ghosh S, Fujita D (2020c) Human brain like intelligent decision-making machine; JP-2017-150173; 8/2/2017; World patent WO 2019/026984; US Patent App. 16/635,892

    Google Scholar 

  76. Singh P, Saxena K, Singhania A, Sahoo P, Ghosh S, Chhajed R et al (2020) A self-operating time crystal model of the human brain: can we replace entire brain hardware with a 3D fractal architecture of clocks alone? Information 11(5):238

    Google Scholar 

  77. Vernizzi G, Sknepnek R, de la Cruz MO (2011) Platonic and Archimedian geometries in multicomponent elastic membranes. PNAS 108:4292–4296

    Google Scholar 

  78. Singh P et al (2020b) A space-time-topology-prime, stTS metric for a self-operating mathematical universe uses dodecanion geometric algebra of 2–20 D complex vectors. In: Ray K, Roy KC, Toshniwal SK, Sharma H, Bandyopadhyay A (eds) Proceedings of international conference on data science and applications. Lecture notes in networks and systems, vol 148. Springer, Singapore. https://doi.org/10.1007/978-981-15-7561-7_1

  79. Singh P et al (2020c) Quaternion, octonion to dodecanion manifold: stereographic projections from infinity lead to a self-operating mathematical universe. In: Singh P, Gupta RK, Ray K, Bandyopadhyay A (eds) Proceedings of international conference on trends in computational and cognitive engineering. Advances in intelligent systems and computing, vol 1169. Springer, Singapore. https://doi.org/10.1007/978-981-15-5414-8_5

  80. Bandyopadhyay A, Sahu S, Fujita D (2009) Smallest artificial molecular neural-net for collective and emergent information processing. Appl Phys Lett 95(11):113702

    Google Scholar 

  81. Milosevic M (2013) On the nature of the evanescent wave. Appl Spectrosc 26(2):126–131

    Google Scholar 

  82. Nye JF (1983) Polarization effects in the diffraction of electromagnetic waves: the role of disclinations. Proc R Soc Lond A387:105–132

    MathSciNet  Google Scholar 

  83. Agrawal L, Chhajed R, Ghosh S, Ghosh B, Ray K, Sahu S et al (2016) Fractal information theory (FIT) derived geometric musical language (GML) for brain inspired hypercomputing. In: Pant M, Ray K, Sharma T, Rawat S, Bandyopadhyay A (eds) Soft computing: theories and applications. advances in intelligent systems and computing. Springer, Singapore, pp 343–372

    Google Scholar 

  84. Aschoff J, Wever R (1981) The circadian system of man. In: Aschoff J (ed) Biological rhythms. Springer, MA, Boston

    Google Scholar 

  85. Gurevich Y, Shelah S (1989) Nearly linear time, vol 363. Springer, LNCS, pp 108–118

    Google Scholar 

  86. Pippinger N, Fischer MJ (1979) Relations among complexity measures. J ACM 269(2):361–381

    MathSciNet  MATH  Google Scholar 

  87. Malinowski JR, Laval-Martin DL, Edmunds LN Jr (1985) Circadian oscillators, cell cycles, and singularities: light perturbations of the free-running rhythm of cell division in Euglena. J Comp Physiol 155B:257–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Ray, K., Bandyopadhyay, A. (2022). Is Coronavirus Pushing Humanity Towards an Evolutionary Jump as It Did Long Back When It Initiated Making a Brain?. In: Biological Antenna to the Humanoid Bot. Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-9677-0_1

Download citation

Publish with us

Policies and ethics