Skip to main content

Reddit Sentiments Effects on Stock Market Prices

  • 334 Accesses

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 282)

Abstract

The market capitalization of GameStop (GME) was listed to be 918 million dollars at the beginning of 2020, increasing 25 fold to 23 billion dollars by the end of January 2021. Similar shifts in market capitalization were seen in other publicly traded companies as well. In this study, sentiment data from r/WallStreetBets discussion board and stock price data over time are garnered. This information is utilized to train a longitudinal long short-term memory model (LSTM) to predict the stock prices of GME and AMC Entertainment Holdings (AMC). Using LSTM architecture, three models are developed with separate input features: previous day’s close price, sentiment data only, and a model with both sets of data. It is observed that sentiment data alone can be predictive of stock prices. However, the models containing solely close price or close price and sentiment data perform significantly better in terms of validation loss, and an average difference in stock price prediction during the validation set of $X and $Y for GME and AMC, respectively. These results show that if institutional investors had included sentiment data in their longitudinal models for predicting AMC and GME stock prices, they might have been able to avoid the short squeeze event.

Keywords

  • Finance
  • Machine learning
  • LSTM
  • Sentiment analysis
  • Stocks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Murphy, M.: GameStop stock surges to highest point since January, market cap tops $17 billion. MarketWatch https://marketwatch.com/story/gamestop-stock-surges-to-highest-point-since-january-market-cap-tops-17-billion-11615337376 (2021). Last accessed 22 May 2021

  2. Wolff-Mann, E.: ‘Fighting 100 mini Mike Tysons’: the powerful influence of Reddit Trade. Yahoo Finance. https://finance.yahoo.com/news/fighting-100-mini-mike-tysons-the-powerful-influence-of-reddit-trade-141009102.html (2021). Last accessed 22 May 2021

  3. Zou, Z., Zihao, Q.: Using LSTM in Stock prediction and Quantitative Trading (CS230). Stanford University, Stanford, United States (2020)

    Google Scholar 

  4. Bollen, J., Huina, M., Xiaojun, Z.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    CrossRef  Google Scholar 

  5. Nann, S.: How does social media influence financial markets? Nasdaq. https://nasdaq.com/articles/how-does-social-media-influence-financial-markets-2019-10-14 (2019). Last accessed 22 May 2021

  6. Preda, G.: Reddit WallStreetBets Posts. Retrieved February 2021 from kaggle.com/gpreda/reddit-wallstreetsbets-posts (2021). Last accessed 22 May 2021

  7. GameStop Corp. (GME) Historical Data: Yahoo Finance https://finance.yahoo.com/quote/GME/history/. Last accessed 22 May 2021

  8. AMC Entertainment Holdings, Inc. (AMC) Historical Data: Yahoo Finance https://finance.yahoo.com/quote/amc/history/. Last accessed 22 May 2021

  9. Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Eight International AAAI Conference on Weblogs and Social Media, vol. 8(1) (2014)

    Google Scholar 

  10. Brownlee, J.: A gentle introduction to long short-term memory networks by the experts. Machine Learning Mastery. https://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/ (2017). Last accessed 22 May 2021

  11. Olah, C.: Understanding LSTM networks. Colah’s Blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (2015). Last accessed 22 May 2021

  12. Phi, M.: Illustrated guide to LSTM’s and GRU’s: a step by step explanation. Towards Data Science. https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21 (2018). Last accessed 22 May 2021

  13. Lu, A., Zeyu, W., Huanzhong, X.: Stock Price Prediction with Deep Learning Framework (CS230). Stanford University, Stanford, United States (2018)

    Google Scholar 

  14. Ranco, G., Aleksovski, D., Caldarelli, G., Grčar, M., Mozetič, I.: The effects of Twitter sentiment on stock price returns. PloS one 10(9), e0138441 (2015)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Dr Parsa Akbari, University of Cambridge, for the guidance and encouragement during this research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Machavarapu, A. (2022). Reddit Sentiments Effects on Stock Market Prices. In: Bhateja, V., Satapathy, S.C., Travieso-Gonzalez, C.M., Adilakshmi, T. (eds) Smart Intelligent Computing and Applications, Volume 1. Smart Innovation, Systems and Technologies, vol 282. Springer, Singapore. https://doi.org/10.1007/978-981-16-9669-5_7

Download citation