Skip to main content

An Anonymous Communication System Based on Software Defined Architecture

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1544))

Included in the following conference series:

Abstract

The existing low-latency anonymous communication networks represented by Tor and I2P networks are mainly composed of voluntary nodes all over the world, and these nodes use onion routing or garlic routing to implement data hop-by-hop transmission. Due to the high autonomy and randomness of voluntary nodes, the reliability, credibility and availability of the entire anonymous network cannot meet specific QoS requirements. For this reason, based on the advantages of P2P network, this paper proposes an anonymous communication system based on software-defined architecture. The system uses file exchange instead of message exchange, realizes asynchronous communication, realizes the anonymity of transmission path, and introduces The control center performs unified programming on the message forwarding path, which has higher flexibility and reliability. The experimental results show that the entire process is encrypted and different messages cannot be correlated, which can achieve the effect of anti-tracing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cisa.einstein[db/ol]. [DB/OL]. https://www.cisa.gov/Einstein. Accessed 31 July 2021

  2. Abhishta, A., van Heeswijk, W., Junger, M., Nieuwenhuis, L.J.M., Joosten, R.: Why would we get attacked? An analysis of attacker’s aims behind DDoS attacks. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 11(2), 3–22 (2020)

    Google Scholar 

  3. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

    Article  MathSciNet  Google Scholar 

  4. Chen, C., Asoni, D.E., Perrig, A., Barrera, D., Danezis, G., Troncoso, C.: TaraNet: traffic-analysis resistant anonymity at the network layer. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 137–152. IEEE (2018)

    Google Scholar 

  5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. Technical report, Naval Research Lab Washington DC (2004)

    Google Scholar 

  6. Domingues, P., Nogueira, R., Francisco, J.C., Frade, M.: Analyzing TikTok from a digital forensics perspective. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 12(3), 87–115 (2021)

    Google Scholar 

  7. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24

    Chapter  Google Scholar 

  8. Duong, D.H., Susilo, W., Trinh, V.C.: Wildcarded identity-based encryption with constant-size ciphertext and secret key. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 11(2), 74–86 (2020)

    Google Scholar 

  9. Hu, N., Teng, Y., Zhao, Y., Yin, S., Zhao, Y.: IDV: internet domain name verification based on blockchain. CMES-Comput. Model. Eng. Sci. 129(1), 299–322 (2021)

    Google Scholar 

  10. Hu, N., Tian, Z., Du, X., Guizani, M.: An energy-efficient in-network computing paradigm for 6G. IEEE Trans. Green Commun. Netw. (2021)

    Google Scholar 

  11. Hu, N., Tian, Z., Du, X., Guizani, N., Zhu, Z.: Deep-green: a dispersed energy-efficiency computing paradigm for green industrial IoT. IEEE Trans. Green Commun. Netw. (2021). https://doi.org/10.1109/TGCN.2021.3064683

  12. Hu, N., Tian, Z., Sun, Y., Yin, L., Zhao, B., Du, X., Guizani, N.: Building agile and resilient UAV networks based on SDN and blockchain. IEEE Netw. 35(1), 57–63 (2021)

    Article  Google Scholar 

  13. Hu, N., Yin, S., Su, S., Jia, X., Xiang, Q., Liu, H.: Blockzone: a decentralized and trustworthy data plane for DNS. CMC-Comput. Mater. Continua 65(2), 1531–1557 (2020)

    Article  Google Scholar 

  14. Iacovazzi, A., Elovici, Y.: Network flow watermarking: a survey. IEEE Commun. Surv. Tutor. 19(1), 512–530 (2016)

    Article  Google Scholar 

  15. Jia, X., et al.: IRBA: an identity-based cross-domain authentication scheme for the internet of things. Electronics 9(4), 634 (2020)

    Article  Google Scholar 

  16. Jia, X., Hu, N., Yin, S., Zhao, Y., Zhang, C., Cheng, X.: A2 chain: a blockchain-based decentralized authentication scheme for 5G-enabled IoT. Mob. Inf. Syst. 2020 (2020)

    Google Scholar 

  17. Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.: Users get routed: traffic correlation on tor by realistic adversaries. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & Communications Security, pp. 337–348 (2013)

    Google Scholar 

  18. Kitana, A., Traore, I., Woungang, I.: Towards an epidemic SMS-based cellular botnet. J. Internet Serv. Inf. Secur. (JISIS) 10(4), 38–58 (2020)

    Google Scholar 

  19. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2014)

    Article  Google Scholar 

  20. Liu, N., Yu, M., Zang, W., Sandhu, R.: Cost and effectiveness of TrustZone defense and side-channel attack on arm platform. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 11(4), 1–15 (2020)

    Google Scholar 

  21. Narteni, S., Vaccari, I., Mongelli, M., Aiello, M., Cambiaso, E.: Evaluating the possibility to perpetrate tunneling attacks exploiting short-message-service. J. Internet Serv. Inf. Secur. (JISIS) 11(3), 30–46 (2021)

    Google Scholar 

  22. Pavlenko, A., Askarbekuly, N., Megha, S., Mazzara, M.: Micro-frontends: application of microservices to web front-ends. J. Internet Serv. Inf. Secur. (JISIS) 10(2), 49–66 (2020)

    Google Scholar 

  23. Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix anonymity system. In: 26th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 17), pp. 1199–1216 (2017)

    Google Scholar 

  24. Pohlmann, N.: Transport layer security (TLS)/secure socket layer (SSL). In: Pohlmann, N. (ed.) Cyber-Sicherheit, pp. 407–438. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25398-1_11

    Chapter  Google Scholar 

  25. Quinn, C., Scanlon, M., Farina, J., Kechadi, M.-T.: Forensic analysis and remote evidence recovery from syncthing: an open source decentralised file synchronisation utility. In: James, J.I., Breitinger, F. (eds.) ICDF2C 2015. LNICST, vol. 157, pp. 85–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25512-5_7

    Chapter  Google Scholar 

  26. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM trans. Inf. Syst. Secur. (TISSEC) 1(1), 66–92 (1998)

    Article  Google Scholar 

  27. Rennhard, M., Plattner, B.: Introducing MorphMix: peer-to-peer based anonymous internet usage with collusion detection. In: Proceedings of the 2002 ACM Workshop on Privacy in the Electronic Society, pp. 91–102 (2002)

    Google Scholar 

  28. Valenza, F., Cheminod, M.: An optimized firewall anomaly resolution. J. Internet Serv. Inf. Secur. (JISIS) 10(1), 22–37 (2020)

    Google Scholar 

  29. Verble, J.: The NSA and Edward Snowden: surveillance in the 21st century. ACM SIGCAS Comput. Soc. 44(3), 14–20 (2014)

    Article  Google Scholar 

  30. Zantout, B., Haraty, R., et al.: I2P data communication system. In: Proceedings of ICN, pp. 401–409. Citeseer (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported in National Natural Science Foundation of China (Grant No. 61976064), National Defence Science and Technology Key Laboratory Fund (61421190306), Guangzhou Science and Technology Plan Project (202102010471), Guangdong Province Science and Technology Planning Project (2020A1414010370).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, X., Chen, Y., Zou, J., Zhang, Y., Hu, N. (2022). An Anonymous Communication System Based on Software Defined Architecture. In: You, I., Kim, H., Youn, TY., Palmieri, F., Kotenko, I. (eds) Mobile Internet Security. MobiSec 2021. Communications in Computer and Information Science, vol 1544. Springer, Singapore. https://doi.org/10.1007/978-981-16-9576-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9576-6_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9575-9

  • Online ISBN: 978-981-16-9576-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics