Skip to main content

Micromachined Single-Pole-Multi-throw Switching Networks

  • Chapter
  • First Online:
Micromachined Circuits and Devices

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 859))

  • 580 Accesses

Abstract

This Chapter presents design, development, and characterization of broadband (1–30 GHz) microelectromechanical systems (MEMS) based electrostatically driven vertical and lateral switching networks. Initially, single switch performances are optimized, and the same switch is used to develop different switching networks starting from single-pole-double-thru (SPDT) to single-pole-fourteen-thru (SP14T) using vertically actuated beams. The vertically actuated switch is designed using three springs to gain the mechanical stability. Later, laterally driven single MEMS switches are designed, fabricated, and tested. Lateral switch is designed with a mechanical springs and stopper to improve the stability without compromising the electromagnetic performances. The lateral switch doesn’t use any dielectric layers. The operation principle of the lateral switch is described in detail. Both switch types (vertical and lateral) are electrostatically driven and implemented on coplanar waveguide transmission line. Switch performances is given importance over a broadband spectrum. The S-parameter performances of all switching networks are described in detail with design guidelines. All experimental results are validated with a circuit analysis and full-wave EM simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucyszyn S (2010) Advanced RF MEMS. Cambridge University Press

    Google Scholar 

  2. http://www.4gamericas.org/files/6514/3930/9262/4G_Americas_5G_Spectrum_Recommendations_White_Paper.pdf

  3. Botula A et al (2009) A thin-film SOI 180 nm CMOS RF switch technology. In: Proceedings of IEEE topical meeting silicon monolithic integrated circuits in RF systems, pp 1–4

    Google Scholar 

  4. Koul SK, Dey S, Poddar AK, Rodhe UL (2016) Ka-band reliable and compact 3-bit TTD phase shifter using MEMS single-pole-eight-throw switching networks. J Micromech Microeng

    Google Scholar 

  5. Dey S, Koul SK (2015) Reliability analysis of Ku-band 5-bit phase shifters using MEMS SP4T and SPDT switches. IEEE Trans Microw Theory Techn 63(12):3997–4012

    Google Scholar 

  6. Rebeiz GM, Theory RFMEMS (2003) Design, and technology. Wiley, Hoboken

    Google Scholar 

  7. Zareie H, Rebeiz GM (2014) Compact high-power SPST and SP4T RF MEMS metal-contact switches. IEEE Trans Microw Theory Tech 61(8):2397–2402

    Google Scholar 

  8. Liu AQ, Palei W, Tang M, Alphones A (2008) Single-pole-four-throw switch using high-aspect-ratio lateral switches. Electron Lett 40(18):1281–1282

    Google Scholar 

  9. Patel CD, Rebeiz GM (2012) A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC-40- GHz applications. IEEE Trans Microw Theory Tech 60(10):3096–3112

    Article  Google Scholar 

  10. Dey S, Koul SK (2016) Systematic measurement of high isolation DC—20 GHz miniature MEMS SPDT switch. Microw Opt Technol Lett 58(5):1154–1159

    Google Scholar 

  11. Lee J, Je CH, Kang S, Choi CA (2005) A low-loss single-pole six-throw switch based on compact RF MEMS switches. IEEE Trans Microw Theory Tech 53(11):3335–3344

    Article  Google Scholar 

  12. Yang H-H, Yahiaoui A, Zareie H, Blondy P, Rebeiz GM (2013) Symmetric and compact single-pole multiple-throw (SP7T, SP11T XE “SP11T”) RF MEMS Switches. J Microelectromech Syst 24(3):685–695

    Article  Google Scholar 

  13. https://www.rfmd.com/product-category/switches

  14. Chaudhry Q, Bayruns R, Arnold B, Sheehy P (2012) A linear CMOS SOI SP14T antenna switch for cellular applications. In: IEEE radio frequency integrated circuits symposium, pp 155–158

    Google Scholar 

  15. Dey S, Koul SK (2013) Design and development of a CPW-based 5-bit switched-line phase shifter using inline metal contact MEMS series switches for 17.25 GHz transmit/receive module application. J Micromech Microeng 24(1):24

    Google Scholar 

  16. San HS, Chen XY, Xu P, Li G, Zhan LX (2008) Using metalinsulator-semiconductor capacitor to investigate the charge accumulation in capacitive RF MEMS switches. Appl Phys Lett 93(6):063506-1–063506-3

    Google Scholar 

  17. Li G, San HS, Chen XY (2009) Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switc. J Appl Phys 105(12):124503-1–124503-6

    Google Scholar 

  18. Yamane D, Sun W, Seita H, Kawasaki S, Fujita H, Toshiyoshi H (2011) A Ku-band dual-SPDT RF-MEMS switch by double-side SOI bulk micromachining. J Microelectromech Syst 20(5):1211–1221

    Article  Google Scholar 

  19. Dey S, Koul SK, Poddar AK, Rohde UL (2016) Extensive performance evaluations of RF MEMS single-pole-multi-throw (SP3T–SP14T) switches up to X-band frequency. J Micromech Microeng 27(1):1–9

    Google Scholar 

  20. Lee J, Je CH, Kang S, Choi CA (2005) A low-loss single-pole six-throw switch based on compact RF MEMS switches. IEEE Trans Microw Theory Tech 53(11):3335–3344

    Article  Google Scholar 

  21. Kingsley N, Kirby P, Ponchak G,Papapolymerou J (2014) 14GHz MEMS 4-bit phase shifter on silicon. In: Topical meeting on silicon monolithic integrated circuits in RF systems, pp 326–328

    Google Scholar 

  22. Koul SK, Dey S (2018) MEMS K-band 4-bit phase shifter using two back-to-back SP16T switching networks. IEEE J Microelectromech Syst 27(4):643–655

    Article  Google Scholar 

  23. Dey S, Koul SK, Poddar A, Roddhe U (2019) Compact, broadband and reliable lateral MEMS switching networks for 5G communications. In: Progress in electromagnetic research (PIER-M), vol 86, pp 163–171

    Google Scholar 

  24. Singh T, Mansour RR (2018) Chalcogenide phase change material GeTe based inline RF SPST series and shunt switches. In: IEEE MTT-S international microwave workshop series on advanced materials and processes for RF and THz applications (IMWS-AMP 2018), Ann Arbor, MI, USA

    Google Scholar 

  25. Singh T, Mansour RR (2019) Miniaturized DC–60 GHz RF PCM GeTe-based monolithically integrated redundancy switch matrix using T-type switching unit cells. IEEE Trans Microw Theory Tech 67(12):5181–5190

    Article  Google Scholar 

  26. Singh T, Mansour RR (2019) Characterization, optimization, and fabrication of phase change material germanium telluride based miniaturized DC–67 GHz RF switches. IEEE Trans Microw Theory Tech 67(8):3237–3250

    Article  Google Scholar 

  27. El-hinnawy N, Borodulin P, Wagner BP et al (2013) A 7.3 THz cutoff frequency, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation. In: IEEE compound semiconductor integrated circuit symposium (CSICS), Monterey, CA, pp 1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, S.K., Dey, S. (2022). Micromachined Single-Pole-Multi-throw Switching Networks. In: Micromachined Circuits and Devices. Lecture Notes in Electrical Engineering, vol 859. Springer, Singapore. https://doi.org/10.1007/978-981-16-9443-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9443-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9442-4

  • Online ISBN: 978-981-16-9443-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics