Skip to main content

Biomass Based Materials for Green Route Production of Energy

  • Chapter
  • First Online:
Green Nano Solution for Bioenergy Production Enhancement

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 193 Accesses

Abstract

To fulfil the energy requirement the exploitation of fossil fuels is now converted as a continuous process that has led to the uncontrolled depletion of our natural resources. In view of the loss of natural resources and their preservation, there is a necessity for the up-gradation and distension of renewable sources of energy presently. Furthermore, the negative effects of the exploitation of natural resources and fossil fuels on the change of climate and environment, global warming, as well as overall pollution, etc. should be studied and taken care of concomitantly. The availability of plenty of biomass materials from different sources and its wonderful possibilities as a renewable reserve makes it the best choice for the conversion, production, and storage of energy. Various methods such as gasification, pyrolysis, etc. are useful thermal treatments for the generation of materials such as biochar, bio-oil, syngas, etc. from the biomass, these products are the perfect sources of green and clean energy. In the trans-esterification process, pyrolysis and production of syngas, biochar is widely used as the main catalyst. Biochar-based other materials are also used in the technological manufacturing of batteries, fuel cells, and super-capacitors. Therefore, biomass and its derived materials can help us in the generation of power, conversion and its storage. The better use of biomass material would also help us in the reduction of environmental pollution global warming and reduced exploitation of natural resources, including secure sustainable development and energy security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  PubMed  Google Scholar 

  • Asadullah M, Zhang S, Min Z, Yimsiri P, Li CZ (2010) Effects of biomass char structure on its gasification reactivity. Bioresour Technol 101:7935–7943

    Article  CAS  PubMed  Google Scholar 

  • Asensio V, Vega FA, Andrade ML, Covelo EF (2013) Tree vegetation and waste amendments to improve the physical condition of copper mine soils. Chemosphere 90:603–610

    Article  CAS  PubMed  Google Scholar 

  • Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116:140–162

    Article  CAS  PubMed  Google Scholar 

  • Baker T, Bartle J, Dickson R, Polglase P, Schuck S (2013) Prospects for bioenergy from short-rotation crops in Australia. Bioenergy SRC Aust, p 15

    Google Scholar 

  • Balat M, Balat M, Kirtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energ Conver Manage 50:3147–3157

    Article  CAS  Google Scholar 

  • Barkat HA, Das SS, Barkat MA, Beg S, Hadi HA (2020) Selective targeting of cancer signaling pathways with nanomedicines: challenges and progress. Future Oncol 16(35):2959–2979

    Article  CAS  PubMed  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on earth. Proc Natl Acad Sci U S A 115:6506–6511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berge ND, Ro KS, Mao J, Flora JRV, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45:5696–5703

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya T, Chakraborty S, Tuteja D, Patel M (2013) Zinc and chromium load in road dust, suspended particulate matter and foliar dust deposits of Anand City, Gujarat. Open J Met 03:42–50

    Article  CAS  Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  • Bryden KM, Hagge MJ (2003) Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel 82:1633–1644

    Article  CAS  Google Scholar 

  • Budhwani N (2015) Removal of polycyclic aromatic hydrocarbons present in tyre pyrolytic oil using low-cost natural adsorbents, Environ. Ecol Eng 9:186–190

    Google Scholar 

  • Cao D, Sun Y, Wang G (2007) Direct carbon fuel cell: fundamentals and recent developments. J Power Sources 167:250–257

    Article  CAS  Google Scholar 

  • Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205

    Article  CAS  Google Scholar 

  • Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15

    Article  CAS  Google Scholar 

  • Cherepy NJ, Krueger R, Fiet KJ, Jankowski AF, Cooper JF (2005) Direct conversion of carbon fuels in a molten carbonate fuel cell. J Electrochem Soc 152:A80

    Article  CAS  Google Scholar 

  • Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179

    Article  CAS  Google Scholar 

  • Cropper M, Griffiths C (1994) The interaction of population growth and environmental quality. Am Econ Rev 84:250–254

    Google Scholar 

  • Dehkhoda AM, West AH, Ellis N (2010) Biochar based solid acid catalyst for biodiesel production. Appl Catal A Gen 382:197–204

    Article  CAS  Google Scholar 

  • Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90

    Article  CAS  Google Scholar 

  • Gardy J, Hassanpour A, Lai X, Ahmed MH, Rehan M (2017) Biodiesel production from used cooking oil using a novel surface functionalized TiO2 nanocatalyst. Appl Catal Environ 207:297–310

    Article  CAS  Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517

    Article  CAS  Google Scholar 

  • Guo X, Zheng S, Luo Y, Pang H (2020) Synthesis of confining cobalt nanoparticles within SiOx/nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. Chem Eng J 401:126005

    Article  CAS  Google Scholar 

  • Guruviah KD, Sivasankaran C, Bharathiraja B (2019) Thermochemical conversion: bio-oil and syngas production. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer, Cham, pp 251–267

    Chapter  Google Scholar 

  • Hossain MM (2016) Recovery of valuable chemicals from agricultural waste through pyrolysis, Electron. Thesis Diss. Repos. University of Western Ontario, Ontario

    Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  • Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119

    Article  CAS  PubMed  Google Scholar 

  • Jafri N, Wong WY, Doshi V, Yoon LW, Cheah KH (2018) A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf Environ Prot 118:152–166

    Article  CAS  Google Scholar 

  • Jain S, Bhattacharya T, Chakraborty S (2019) Comparison of plant tolerance towards air pollution of rural, urban and mine sites of Jharkhand: abiochemical approach to identify air pollutant sink. In: Kalamdhad AS, Singh J, Dhamodharan K (eds) Advances in waste management: select proceedings of recycle 2016. Springer, Singapore, pp 123–142

    Chapter  Google Scholar 

  • Janicek A, Gao N, Fan Y, Liu H (2015) High performance activated carbon/carbon cloth cathodes for microbial fuel cells. Fuel Cells 15:855–861

    Article  CAS  Google Scholar 

  • Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T (2012) Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today 190:122–132

    Article  CAS  Google Scholar 

  • Krerkkaiwan S, Mueangta S, Thammarat P, Jaisat L, Kuchonthara P (2015) Catalytic biomass-derived tar decomposition using char from the copyrolysis of coal and giant leucaena wood biomass. Energy Fuels 29:3119–3126

    Article  CAS  Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Rev Environ Contam Toxicol 236:1–115

    CAS  PubMed  Google Scholar 

  • Lee J, Yang X, Cho SH, Kim JK, Lee SS, Tsang DCW, Ok YS, Kwon EE (2017) Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Appl Energy 185:214–222

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strat Glob Chang 11:403–427

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Li X, Ichiro Hayashi J, Li CZ (2006) Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel 85:1509–1517

    Article  CAS  Google Scholar 

  • Li X, Zhu Z, Chen J, De Marco R, Dicks A, Bradley J, Lu G (2009) Surface modification of carbon fuels for direct carbon fuel cells. J Power Sources 186:1–9

    Article  CAS  Google Scholar 

  • Li M, Zheng Y, Chen Y, Zhu X (2014) Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour Technol 154:345–348

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang X, Xue H, Pang H, Xu Q (2020) Metal–organic frameworks as a platform for clean energy applications. Energy Chem 2:100027

    Article  Google Scholar 

  • Lian F, Huang F, Chen W, Xing B, Zhu L (2011) Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solutesystems. Environ Pollut 159:850–857

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Cheng HY, Kong DY, Gao SH, Sun F, Cui D, Kong FY, Zhou AJ, Liu WZ, Ren NQ (2013) Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. Environ Sci Technol 47:5353–5361

    Article  CAS  PubMed  Google Scholar 

  • Liao W, Thomas S (2019) Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Syst 3:14

    Article  CAS  Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li F, Lai-Peng M, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Yang XL, Zhu XF (2008) Analysis on chemical and physical properties of biooil pyrolyzed from rice husk. J Anal Appl Pyrolysis 82:191–198

    Article  CAS  Google Scholar 

  • Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919

    Article  Google Scholar 

  • Luo C, Lu F, Shao L, He P (2014) Corrigendum to “Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes”. Water Res 68:710–718

    Article  CAS  Google Scholar 

  • Madhuvilakku R, Piraman S (2013) Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour Technol 150:55–59

    Article  CAS  PubMed  Google Scholar 

  • Manyà JJ, González B, Azuara M, Arner G (2018) Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chem Eng J 345:631–639

    Article  CAS  Google Scholar 

  • McCarl BA, Peacocke C, Chrisman R, Kung CC, Sands RD (2012) Economics of biochar production, utilization and greenhouse gas offsets. In: Lehmann J, Joseph S (eds) Book biochar for environmental management. Routledge, pp 341–357

    Google Scholar 

  • Miandad R, Rehan M, Nizami AS, El-Fetouh Barakat MA, Ismail IM (2016) The energy and value-added products from pyrolysis of waste plastics. In: Karthikeyan OP, Heimann K, Muthu SS (eds) Recycling of solid waste for biofuels and bio-chemicals. Springer, Singapore, pp 333–355

    Chapter  Google Scholar 

  • Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Ismail IMI, Nizami AS (2017) Effect of plastic waste types on pyrolysis liquid oil. Int Biodeter Biodegr 119:239–252

    Article  CAS  Google Scholar 

  • Miandad R, Rehan M, Barakat MA, Aburiazaiza AS, Khan H, Ismail IMI, Dhavamani J, Gardy J, Hassanpour A, Nizami AS (2019) Catalytic pyrolysis of plastic waste: moving toward pyrolysis based biorefineries. Front Energy Res 7(27)

    Google Scholar 

  • Mondal NK, Samanta A, Chakraborty S, Shaikh WA (2018) Enhanced chromium (VI) removal using banana peel dust: isotherms, kinetics and thermodynamics study. Sustain Water Resour Manag 4:489–497

    Article  Google Scholar 

  • Mumme J, Srocke F, Heeg K, Werner M (2014) Use of biochars in anaerobic digestion. Bioresour Technol 164:189–197

    Article  CAS  PubMed  Google Scholar 

  • Nakicenovic N, IEA, World Energy Outlook (2007) China and India insights, vol 2007. IEA, pp 443–485

    Google Scholar 

  • Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz 7:201–235

    Article  CAS  Google Scholar 

  • Nautiyal P, Subramanian KA, Dastidar MG (2016) Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternateuse of waste of biodiesel industry. J Environ Manage 182:187–197

    Article  CAS  PubMed  Google Scholar 

  • Nizami AS, Ouda OKM, Rehan M, El-Maghraby AMO, Gardy J, Hassanpour A, Kumar S, Ismail IMI (2016) The potential of Saudi Arabian naturalzeolites in energy recovery technologies. Energy 108:162–171

    Article  CAS  Google Scholar 

  • Onay O, Kockar OM (2003) Slow, fast and flash pyrolysis of rapeseed. Renew Energy 28:2417–2433

    Article  CAS  Google Scholar 

  • Park YK, Jeon JK, Kim S, Kim JS (2004) Bio-oil from rice straw by pyrolysis using fluidized bed and char removal system. ACS Natl Meet B Abstr 49(2):228

    Google Scholar 

  • Peng L, Cai Y, Luo Y, Yuan G, Huang J, Hu C, Dong H, Xiao Y, Liang Y, Liu Y, Zheng M (2018) Bioinspired highly crumpled porous carbons with multidirectional porosity for high-rate performance electrochemical supercapacitors. ACS Sustain Chem Eng 6:12716–12726

    Article  CAS  Google Scholar 

  • Peters JF, Iribarren D, Dufour J (2015) Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ Sci Technol 49:5195–5202

    Article  CAS  PubMed  Google Scholar 

  • Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine Max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3(1):14–19

    Article  CAS  Google Scholar 

  • Pietikainen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  CAS  Google Scholar 

  • Proll T, Aichernig C, Rauch R, Hofbauer H (2007) Fluidized bed steam gasification of solid biomass—performance characteristics of an 8 MWth combined heat and power plant. Int J Chem React Eng 5

    Google Scholar 

  • Rostrup-Nielsen JR (2001) Conversion of hydrocarbons and alcohols for fuel cells. Phys Chem Chem Phys 3:283–288

    Article  CAS  Google Scholar 

  • Saleh TA, Shetti NP, Shanbhag MM, Raghava Reddy K, Aminabhavi TM (2020) Recent trends in functionalized nanoparticles loaded polymeric composites: an energy application. Mater Sci Energy Technol 3:515–525

    CAS  Google Scholar 

  • Shahzad K, Nizami AS, Sagir M, Rehan M, Maier S, Khan MZ, Ouda OKM, Ismail IMI, BaFail AO (2017) Biodiesel production potential from fat fraction of municipal waste in Makkah. PLoS One 12:e0171297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaikh WA, Alam MA, Alam MO, Chakraborty S, Owens G, Bhattacharya T, Mondal NK (2020) Enhanced aqueous phase arsenic removal by abiochar-based iron nanocomposite. Environ Technol Innov 19:100936

    Article  Google Scholar 

  • Shen Y, Linville JL, Urgun-Demirtas M, Schoene RP, Snyder SW (2015) Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl Energy 158:300–309

    Article  CAS  Google Scholar 

  • Singh BP, Cowie AL, Smernik RJ (2012) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46:11770–11778

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Srivastava M, Ramteke P, Vijay K (2019) Sustainable approaches for biofuel production technologies. Biofuel Biorefin Technol 7:121–146

    Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Zheng M, Hu H, Dong H, Liang Y, Xiao Y, Lei B, Liu Y (2018) From biomass wastes to vertically aligned graphene nanosheet arrays: a catalyst-freesynthetic strategy towards high-quality graphene for electrochemical energystorage. Chem Eng J 336:550–561

    Article  CAS  Google Scholar 

  • Sun Y, Shi P, Chen J, Wu Q, Liang X, Rui X, Xiang H, Yu Y (2020) Development and challenge of advanced nonaqueous sodium ion batteries. Energy Chem 2:100031

    Article  Google Scholar 

  • Sundaram EG, Natarajan E (2009) Pyrolysis of coconut shell: an experimental investigation. J Eng Res (TJER) 6:33

    Google Scholar 

  • Tergin D (2006) Ensuring energy security. Foreign Aff 85:69

    Article  Google Scholar 

  • Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energ Environ Sci 5:6796–6822

    Article  Google Scholar 

  • Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481

    Article  CAS  Google Scholar 

  • Van Bavel J (2013) The world population explosion: causes, backgrounds and projections for the future, facts, views. Vis ObGyn 5:281–291

    Google Scholar 

  • Wang S, Gao B, Li Y, Mosa A, Zimmerman AR, Ma LQ et al (2015) Manganese oxidemodified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour Technol 181:13–17

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yu W, Shi J, Mao N, Chen S, Liu W (2016) Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta 188:103–110

    Article  CAS  Google Scholar 

  • Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev 90:223–247

    Article  CAS  Google Scholar 

  • Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48:10324–10334

    Article  CAS  Google Scholar 

  • Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manage 146:189–197

    Article  CAS  PubMed  Google Scholar 

  • Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16:4406–4414

    Article  CAS  Google Scholar 

  • Yan L, Yu J, Houston J, Flores N, Luo H (2017) Biomass derived porous nitrogendoped carbon for electrochemical devices. Green Energy Environ 2:84–99

    Article  Google Scholar 

  • Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268

    Article  CAS  PubMed  Google Scholar 

  • Yin R, Liu R, Mei Y, Fei W, Sun X (2013) Characterization of bio-oil and bio-charobtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel 112:96–104

    Article  CAS  Google Scholar 

  • Yu OY, Raichle B, Sink S (2013) Impact of biochar on the water holding capacity of loamy sand soil. Int J Energy Environ Eng 4:1–9

    Article  Google Scholar 

  • Zhang L, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483

    Article  CAS  Google Scholar 

  • Zhang L, Xiao J, Wang H, Shao M (2017) Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal 7:7855–7865

    Article  CAS  Google Scholar 

  • Zhang Q, Han K, Li S, Li M, Li J, Ren K (2018) Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10:2427–2437

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Chen F, Bai T, Long B, Liao Q, Ren Y, Yang J (2016) Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem 18:2078–2088

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thankfully acknowledge Birla Institute of technology, Mesra, Ranchi, Jharkhand. DBP is thankful to NPIU (TEQIP-III), Govt. of India for the financial support and Co-PIs of the project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, A.K., Nirupama, Mishra, A.N., Pal, S.L., Pal, D.B. (2022). Biomass Based Materials for Green Route Production of Energy. In: Srivastava, M., Malik, M.A., Mishra, P. (eds) Green Nano Solution for Bioenergy Production Enhancement. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-9356-4_1

Download citation

Publish with us

Policies and ethics