Skip to main content

Impact of Pesticides on the Ecosystem

  • Chapter
  • First Online:
Agrochemicals in Soil and Environment

Abstract

In the present time, pesticides have very serious impacts on the environment. Soil and air pollution are caused by the use of industrial pesticides, and some of the substances in the pesticides take years, if not decades, to degrade. The welfare of animals, microorganisms, trees and human is harmed by these chemicals. However, many natural pesticides (biopesticides) are also good at controlling pests. People must prefer biopesticides over toxic pesticides as the former are easily degradable either in soil or by sunlight. The soil will turn back to its natural state as soon as the chemicals degrade. Biopesticides are also non-toxic for humans and livestock. They vanish faster from eatable products, such as fruits and vegetables, thereby enabling us to consume them quickly. In this chapter, main emphasis is given to the impact of pesticides on the ecosystem in various ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Pandey RS, Sharma B (2010) Water pollution with special reference to pesticide contamination in India. J Water Resour Prot 02:432–448

    CAS  Google Scholar 

  • Aktar MW, Sen Gupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    PubMed  PubMed Central  Google Scholar 

  • Anonymous (1993) The environmental effects of pesticide drift. In: Crop life America. English Nature, Peterborough, pp 9–17. Benefits of pesticides and crop protection chemicals

    Google Scholar 

  • Bakshi S, He ZL, Harris WG (2015) Natural nanoparticles: implications for environment and human health. Crit Rev Environ Sci Technol 45:861–904

    CAS  Google Scholar 

  • Berg VF, Kubiak R, Benjey WG, Majewski MS, Yates SR (1999) Emission of pesticides into the air. Water Air Soil Pollut 115:195–218

    Google Scholar 

  • Bingham S (2007) Pesticides in rivers and groundwater. Environment Agency, London

    Google Scholar 

  • Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 543:251–272

    CAS  PubMed  Google Scholar 

  • Brammall RA, Higgins VJ (1988) The effect of glyphosate on resistance of tomato to Fusarium crown and root rot disease and on the formation of host structural defensive barriers. Can J Bot 66:1547–1555

    CAS  Google Scholar 

  • Brown AWA (1951) Insect control by chemicals. John Wiley & Sons, New York, NY

    Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy 9:685–692

    Google Scholar 

  • Casabé N, Piola L, Fuchs J, Oneto ML, Pamparato L, Basack S, Kesten E (2007) Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. J Soils Sediments 7:232–239

    Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117

    CAS  PubMed  Google Scholar 

  • Chakravarty P, Sidhu SS (1987) Effects of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi. For Pathol 17:4–5

    Google Scholar 

  • Chandra S, Pradhan S, Mitra S, Patra P, Bhattacharya A, Pramanik P, Goswami A (2014) High-throughput electron transfer from aminated carbon dots to the chloroplast: a rationale of enhanced photosynthesis. Nanoscale 6:3647–3655

    CAS  PubMed  Google Scholar 

  • Choudhury SR, Pradhan S, Goswami A (2012) Preparation and characterisation of acephate Nano-encapsulated complex. Nanosci Methods 1:9–15

    CAS  Google Scholar 

  • Chowdhury P, Gogoi M, Borchetia S, Bandyopadhyay T (2017) Nanotechnology applications and intellectual property rights in agriculture. Environ Chem Lett 15:413–419

    CAS  Google Scholar 

  • Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26:1337–1348

    CAS  Google Scholar 

  • Crafton EA, Glowczewski J, Ott DW, Cutright TJ (2018) In situ field trial to evaluate the efficacy of Cutrine Ultra to manage a cyanobacteria population in a drinking water source. Environ Sci Water Res Technol 4:863–871

    CAS  Google Scholar 

  • Culliney TW, Pimentel D, Pimentel MH (1992) Pesticides and natural toxicants in foods. Agric Ecosyst Environ 41:297–320

    CAS  Google Scholar 

  • Decourtye A, Lacassie E, Pham-Delègue MH (2003) Learning performances of honeybees (Apismellifera L.) are differentially affected by Imidacloprid according to the season. Pest Manag Sci 59:269–278

    CAS  PubMed  Google Scholar 

  • Dekeyser MA, McDonald PT, Angle GW (2003) The discovery of bifenazate, a novel carbazateacaricide. CHIMIA Int J Chem 57:702–704

    CAS  Google Scholar 

  • Delaplane KS (2000) Pesticide usage in the United States: history, benefits, risks, and trends. Cooperative Extension Service. The University of Georgia, College of Agricultural and Environmental Sciences. Bulletin 1121. Reprinted November

    Google Scholar 

  • Dreistadt SH, Clark JK, Flint ML (1994) Pests of landscape trees and shrubs. An integrated pest management guide. In University of California Division of Agriculture and Natural Resources

    Google Scholar 

  • Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. Sustain Agric Rev 07:307–330

    Google Scholar 

  • Durmaz H, Sevgiler Y, Üner N (2006) Tissue-specific anti oxidative and neurotoxic responses to diazinon in Oreochromis niloticus. Pestic Biochem Physiol 84:215–226

    CAS  Google Scholar 

  • Egbuna C, Sawicka B (eds) (2019) Natural remedies for pest, disease and weed control. Academic Press, Cambridge

    Google Scholar 

  • van Emden HF, Peakall DB (1996) Beyond silent, spring. Springer, Berlin. ISBN 978-0-412-72800-6

    Google Scholar 

  • Fletcher JS, Pfleeger TG, Ratsch HC (1993) Potential environmental risks associated with the new sulfonylurea herbicides. Environ Sci Technol 27:2250–2252

    CAS  Google Scholar 

  • Forson DD, Storfer A (2006) Atrazine increases Ranavirus susceptibility in the tiger salamander (Ambystomatigrinum). Ecol Appl 16:2325–2332

    PubMed  Google Scholar 

  • Fox JE et al (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci 104:10282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI (2010) Molecular mechanisms of pesticide induced neurotoxicity: relevance to Parkinson’s disease. Chem Biol Interact 188:289–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frankenberger WT, Tabatabai MA Jr, Tabatabai MA (1991) Factors affecting L-asparaginase activity in soils. Biol Fertil Soils 11:1–5

    CAS  Google Scholar 

  • Freed VH, Chiou CT (1981) Physicochemical factors in routes and rates of human exposure to chemicals. In: McKinney JD (ed) Environmental health chemistry. Ann Arbor Science Publishers Inc, Ann Arbor, MI

    Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  PubMed  Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39:103–110

    PubMed  Google Scholar 

  • Gilliom RJ et al (2007) The Quality of our nation’s waters: pesticides in the nation’s streams and ground water, 1992–2001. United States Geological Survey, Reston, VA

    Google Scholar 

  • Guerra-García A, Barrales-Alcalá D, Argueta-Guzmán M, Cruz A, Mandujano MC, Arévalo-Ramírez JA, Golubov J (2018) Biomass allocation, plantlet survival, and chemical control of the invasive chandelier plant (Kalancho edelagoensis) (Crassulaceae). Invas Plant Sci Manag 11:33–39

    Google Scholar 

  • Gupta A, Saraswat P, Yadav K, Prasad M, Ranjan R (2021) Physiological and molecular basis for remediation of pesticides. Elsevier, Amsterdam, pp 551–568

    Google Scholar 

  • Hackenberg D (2007) Letter from David Hackenberg to American growers

    Google Scholar 

  • Halo BA, Al-Yahyai RA, Al-Sadi AM (2018) Aspergillus terreus inhibits growth and induces morphological abnormalities in Pythium aphanidermatum and suppresses Pythium-induced damping-off of cucumber. Front Microbiol 9:95

    PubMed  PubMed Central  Google Scholar 

  • Hayo HMG, Werf VD (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96

    Google Scholar 

  • Helfrich LA, Weigmann DL, Hipkins P, Stinson ER (2009) Pesticides and aquatic animals: a guide to reducing impacts on aquatic systems. https://pubs.ext.vt.edu/420/420-013/420-013.html. Virginia Polytechnic Institute and State University

  • Helling CS, Kearney PC, Alexander M (1971) Behavior of pesticides in soils. Adv Agron 23:147–240

    CAS  Google Scholar 

  • Helweg C et al (2003) Fate of pesticides in surface waters, laboratory and field experiments. Ministry of the Environment, Danish Environmental Protection Agency. Pestic Res 68

    Google Scholar 

  • Henrick CA (2007) Methoprene. J Am Mosq Control Assoc 23(Suppl 2):225–239

    CAS  PubMed  Google Scholar 

  • Hicks B (2013) Agricultural pesticides and human health. National Association of Geoscience Teachers, Northfield, MN

    Google Scholar 

  • Hoque MM, Sanchez FF, Benigno EA (1988) Rodent problems in selected countries in Southeast Asia and islands in the Pacific. In: Rodent pest management. CRC Press, Boca Raton, FL, pp 85–99

    Google Scholar 

  • Jabbar A, Mallick S (1994) Pesticides and environment situation in Pakistan. Sustainable Development Policy Institute (SDPI), Islamabad

    Google Scholar 

  • Johnston AE (1986) Soil organic-matter, effects on soils and crops. Soil Use Manag 2:97–105

    Google Scholar 

  • Katagi T (2010) Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 204. Springer Science Business Media, New York, NY, pp 1–132

    Google Scholar 

  • Kaur S, Barua IC, Kaur T, Kaur N, Kaul A, Bhullar MS (2018) Appearance of new weeds in Punjab. Indian J Weed Sci 50:59–63

    Google Scholar 

  • Kegley S et al (1999) Disrupting the balance, ecological impacts of pesticides in California

    Google Scholar 

  • Kelley WD, South DB (1978) In vitro effects of selected herbicides on growth and mycorrhizal fungi. In: Weed Sci Soc. America Meeting. Auburn University, Auburn, AL, p 38

    Google Scholar 

  • Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113–1119

    CAS  PubMed  Google Scholar 

  • Kookana RS, Boxall ABA, Reeves PT, Ashauer R, Beulke S, Chaudhry Q et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62(19):4227–4240. https://doi.org/10.1021/jf500232f

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Rai D, Porwal P, Kumar S (2018) Compositional quality of milk and its contaminants on physical and chemical concern: a review. Int J Curr Microbiol App Sci 7:1125–1132

    Google Scholar 

  • Kuswandi B (2019) Nanobiosensor approaches for pollutant monitoring. Environ Chem Lett 17:975–990

    CAS  Google Scholar 

  • Lah K (2011) Effects of pesticides on human health. In: Toxipedia

    Google Scholar 

  • Lang M, Cai Z (2009) Effects of chlorothalonil and carbendazim on nitrification and denitrification in soils. J Environ Sci 21:458–467

    CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    CAS  PubMed  Google Scholar 

  • Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726

    PubMed  Google Scholar 

  • Liroff RA (2000) Balancing risks of DDT and malaria in the global POPs treaty. Pestic Safety News 4:3

    Google Scholar 

  • Locke D, Landivar JA, Moseley D (1995) The effects of rate and timing of glyphosate applications of defoliation efficiency, regrowth inhibition, lint yield, fiber quality and seed quality. Proc Beltwide Cotton Conf 2:1088–1090

    Google Scholar 

  • Lotter DW, Seidel R, Liebhardt W (2003) The performance of organic and conventional cropping systems in an extreme climate year. Am J Altern Agric 18:146–154

    Google Scholar 

  • Lourencetti C, Demarchi MRR, Ribeiro ML (2008) Determination of sugar cane herbicides in soil and soil treated with sugar cane vinasse by solid-phase extraction and HPLCUV. Talanta 77:701–709

    CAS  Google Scholar 

  • Majewski M, Capel P (1995) Pesticides in the atmosphere: distribution, trends, and governing factors. In: Pesticides in the hydrologic system, vol 1. Ann Arbor Press, Boca Raton, FL, p 118

    Google Scholar 

  • Marer PJ, Flint ML, Stimmann MW (1988) The safe and effective use of pesticides. University of California, Division of Agriculture and Natural Resources, San Diego, CA

    Google Scholar 

  • Matsumura F (1975) Modes of action of insecticides. In: Matsumura F (ed) Toxicology of insecticides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4410-0_4

    Chapter  Google Scholar 

  • McSorley R, Gallaher RN (1996) Effect of yard waste compost on nematode densities and maize yield. J Nematol 28:655–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller GT (2004) Sustaining the earth, 6th edn. Thompson Learning, Inc., Pacific Grove, CA

    Google Scholar 

  • al Mills LS, Doak DF (1993) The keystone-species concept in ecology and conservation. Bioscience 43:219–224

    Google Scholar 

  • Mohamed A, El-Sayed R, Osman TA, Toprak MS, Muhammed M, Uheida A (2016) Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ Res 145:18–25

    CAS  PubMed  Google Scholar 

  • Moorman TB (1989) A review of pesticide effects on microorganisms and microbial processes related to soil fertility. J Prod Agric 2:14–23

    Google Scholar 

  • Mordue AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39:903–924

    CAS  Google Scholar 

  • Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    CAS  PubMed  Google Scholar 

  • Nelms CO, Avery ML (1997) Reducing bird repellent application rates by the addition of sensory stimuli. Int J Pest Manag 43:187–190

    Google Scholar 

  • Noji T, Suzuki H, Gotoh T, Iwai M, Ikeuchi M, Tomo T, Noguchi T (2011) Photosystem II-gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems. J Phys Chem Lett 2:2448–2452

    CAS  Google Scholar 

  • de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotech-noology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    PubMed  Google Scholar 

  • Osano O, Admiraal W, Klamer HJC, Pastor D, Bleeker EAJ (2002) Comparative toxic and genotoxic effects of chloroacetanilides, formamidines and their degradation products on Vibrio fischeri and Chironomusriparius. Environ Pollut 119:195–202

    CAS  PubMed  Google Scholar 

  • Pell M, Stenberg B, Torstensson L (1998) Potential denitrification and nitrification tests for evaluation of pesticide effects in soil. Ambio 27:24–28

    Google Scholar 

  • Pilling ED, Jepson PC (2006) Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apismellifera). Pestic Sci 39:293–297

    Google Scholar 

  • Pradhan S, Mailapalli D (2020) Nanopesticides for pest control. In: Sustainable agriculture reviews. Springer, New York, NY. https://doi.org/10.1007/978-3-030-33281-5_2

    Chapter  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Goswami A (2013a) A detailed molecular biochemical and biophysical study of manganese nanoparticles, a new Nano modulator of photochemistry on plant model, Vignaradiata and its biosafety assessment. Environ Sci Technol 47(22):13122–13131. https://doi.org/10.1021/es402659t

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Roy I, Lodh G, Patra P, Choudhury SR, Samanta A, Goswami A (2013b) Entomotoxicity and biosafety assessment of pegylatedacephate nanoparticles: a biologically safe alternative to neurotoxic pesticides. J Environ Sci Health B 48:559–569

    CAS  PubMed  Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Goswami A (2014) Manganese nanoparticle: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62:8777–8785

    CAS  PubMed  Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Goswami A (2015) Physiological, biochemical and biophysical assessment in Vignaradiata by CuNP nanochain array: a new approach for crop improvement. J Agric Food Chem 63:2606–2617

    CAS  PubMed  Google Scholar 

  • Ranjan S, Dasgupta N, Singh S, Gandhi M (2019) Toxicity and regulations of food nanomaterials. Environ Chem Lett 17:929–944

    CAS  Google Scholar 

  • Rashid B, Husnain T, Riazuddin S (2010) Herbicides and pesticides as potential pollutants: a global problem. In: Plant adaptation phytoremediation. Springer, Dordrecht, pp 427–447

    Google Scholar 

  • Regnault-Roger C, Philogène BJR, Vincent C (2005) Biopesticides of plant origin. Lavoisier, Paris, p 313

    Google Scholar 

  • Relyea RA (2005) The lethal impact of roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124

    Google Scholar 

  • Relyea RA, Hoverman JT (2008) Interactive effects of predators and a pesticide on aquatic communities. Oikos 117:1647–1658

    Google Scholar 

  • Rockets R (2007) Down on the farm, yields, nutrients and soil quality. In: Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Academic Press, New York, NY

    Google Scholar 

  • Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, Beasley VR (2008) Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235–1239

    CAS  PubMed  Google Scholar 

  • Sacramento CA (2008) Department of Pesticide regulation “what are the potential health effects of pesticides?”. In: Community guide to recognizing and reporting pesticide problems. California Dept. of Pesticide Regulation, Sacramento, CA, pp 27–29

    Google Scholar 

  • Saeedi Saravi SS, Shokrzadeh M (2011) Role of pesticides in human life in the modern age: a review. In: Stoytcheva M (ed) Pesticides in the modern world—risks and benefits. InTech, Rijeka

    Google Scholar 

  • Santos A, Flores M (1995) Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett Appl Microbiol 20:349–352

    CAS  Google Scholar 

  • Scala S, Pucci N, Loreti S (2018) The diagnosis of plant pathogenic bacteria: a state of art. Front Biosci 10:449–460

    Google Scholar 

  • Scholz NL, Fleishman E, Brown L, Werner I, Johnson ML, Brooks ML (2012) A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. Bioscience 62:428–434

    Google Scholar 

  • Schreck E, Geret F, Gontier L, Treilhou M (2008) Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosan octurna. Chemosphere 71:1832–1839

    CAS  PubMed  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92

    Google Scholar 

  • Silvy NJ (ed) (2012) The wildlife techniques manual: research, vol 1, 7th edn. Johns Hopkins University Press, Baltimore, MD, pp 154–155. ISBN: 978-1-4214-0159-1

    Google Scholar 

  • Sparling DW, Fellers GM (2009) Toxicity of two insecticides to California, USA, anurans and its relevance to declining amphibian populations. Environ Toxicol Chem 28:1696–1703

    CAS  PubMed  Google Scholar 

  • Spear R (1991) Recognised and possible exposure to pesticides. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic Press, San Diego, CA, pp 245–274

    Google Scholar 

  • Speck-Planche A, Kleandrova VV, Scotti MT (2012) Fragment-based approach for the in silico discovery of multi-target insecticides. Chemom Intell Lab Syst 111:39–45

    CAS  Google Scholar 

  • Straathoff H (1986) Investigations on the phytotoxic relevance of volatilization of herbicides. Mededelingen 51:433–438

    Google Scholar 

  • Taylor AW, Glotfelty DE (1988) Evaporation from soils and crops. In: Grover R (ed) Environmental chemistry of herbicides, vol I. CRC Press, Boca Raton, FL

    Google Scholar 

  • Tu M, Hurd C, Randall JM (2001) Weed control methods handbook. Nature Conservancy, Arlington, VA

    Google Scholar 

  • Unsworth et al (2010) Agrochemical handbook from C.H.I.P.S, Agrochemical and security

    Google Scholar 

  • Van Wezel AP, van Vlaardingen P (2004) Environmental risk limits for antifouling substances. Aquat Toxicol 66:427–444

    PubMed  Google Scholar 

  • Voos G, Groffman PM (1997) Relationships between microbial biomass and dissipation of 2,4-D and dicamba in soil. Biol Fertil Soils 24:106–110

    CAS  Google Scholar 

  • Ware GW (1991) Fundamentals of pesticides: a self-instruction guide. Thomson Publications, Fresno, CA. 307 p

    Google Scholar 

  • Webster JPG, Bowles RG, Williams NT (1999) Estimating the economic benefits of alternative pesticide usage scenarios: wheat production in the United Kingdom. Crop Prot 18:83–89

    Google Scholar 

  • Yang EC, Chuang YC, Chen YL, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of Imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101:1743–1748

    CAS  PubMed  Google Scholar 

  • Yata VK, Tiwari BC, Ahmad I (2018) Nanoscience in food and agriculture: research, industries and patents. Environ Chem Lett 16:79–84

    CAS  Google Scholar 

  • Zacharia JT (2011) Ecological effects of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world—risks and benefits. InTechOpen, London

    Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide NPs by pumpkin plants. J Environ Monit 10:713–717

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the director, Dayalbagh Educational Institute, and head, Department of Botany, Dayalbagh, Agra, for providing support and infrastructure.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Gupta, A., Waswani, H., Prasad, M., Ranjan, R. (2022). Impact of Pesticides on the Ecosystem. In: Naeem, M., Bremont, J.F.J., Ansari, A.A., Gill, S.S. (eds) Agrochemicals in Soil and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-9310-6_7

Download citation

Publish with us

Policies and ethics