Skip to main content

Impact of Insecticides on Soil and Environment and Their Management Strategies

  • Chapter
  • First Online:
Agrochemicals in Soil and Environment

Abstract

Now-a-days pesticides become an essential part of our up-to-date life and help us to preserve agricultural fields, stored grain, flowers beds, and exterminate pests that extend harmful infectious diseases. Insecticides are chemicals used to eliminate insects that attack, destroy, or injure plants. Insecticides are beneficial to crops but also have a significant harmful environmental impact. Excessive insecticide use may lead to the destruction of biodiversity. Insecticides enter into the food chain, where they bioaccumulate at a higher tropic level. Non-target organisms such as valuable soil microbes, plants, birds, fish, and insects exposed to insecticide residues in soil, water, and air worldwide possess major health and environmental risks. Novel scientific pest management approaches like integrated pest management (IPM), as well as laws prohibiting high-risk insecticides, limit the harmful consequences of insecticide contamination to the environmental habitat and soils. Based on such aspects, a national implementation plan (NIP) should be developed and implemented. Furthermore, new technologies viz. nano-biotechnology may contribute to the development of resistant genotype or insecticides with less undesirable repercussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mallek AY, Moharram AM, Abdel-Kader MI, Omar SA (1994) Effect of soil treatment with the organophosphorus insecticide profenofos on the fungal flora and some microbial activities. Microbiol Res 149:167–171

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS, Zaidi A, Wani PA (2009) Remediation of herbicides contaminated soil using microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes in sustainable agriculture. Nova Science Publishers Inc, New York, NY, pp 261–284

    Google Scholar 

  • Amirkhanov DV, Nikolenko AG, Bagautdinov FY, Kirillova SS (1994) Effect of production dosage of gamma-HCH, foxim, cypermethrin and chlorfluazuron on soil microorganisms. Agrokhimiya 2:83–88

    Google Scholar 

  • Andrea MM, Peres TB, Luchini LC, Pettinelli Junior A (2000) Impact of long-term pesticide application on some soil biological parameters. J Environ Sci Health A 35:297–307

    Article  CAS  Google Scholar 

  • Anjum B, Kumar R, Kumar R, Prakash O, Srivastava RM, Pant AK (2019) Phytochemical analysis, antioxidant, anti-inflammatory and insect antifeeding activity of Ardisia solanacea Roxb. extracts. J Biol Act Prod Nat 9(5):372–386

    CAS  Google Scholar 

  • Barr DB, Needham LL (2002) Analytical methods for biological monitoring of exposure to pesticides: a review. J Chromatogr 778:5–29

    CAS  Google Scholar 

  • Blacquiere T, Smagghe G, Van Gestel CAM, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown TM, Brogdon WG (1987) Improved detection of insecticides resistance through conventional and molecular techniques. Annu Rev Entomol 32:145–162

    Article  CAS  PubMed  Google Scholar 

  • Carriger JF, Rand GM, Gardinali PR, Perry WB, Tompkins MS, Fernandez AM (2006) Pesticides of potential ecological concern in sediment from South Florida canals: an ecological risk prioritization for aquatic arthropods. Soil Sediment Contam 15:21–45

    Article  CAS  Google Scholar 

  • Carter AD, Heather AIJ (1995) Pesticides in groundwater. In: Best GA, Ruthven AD (eds) Pesticides- developments, impacts, and controls. The Royals Society of Chemistry, London, p 123

    Google Scholar 

  • Chalam AV, Sasikala C, Ramana CV, Rao PR (1996) Effect of pesticides on hydrogen metabolism of Rhodobacter sphaeroides and Rhodopseudomonas palustris. FEMS Microbiol Ecol 19:1–4

    Article  CAS  Google Scholar 

  • Chauhan SS, Prakash O, Padalia RC, Vivekanand, Pant AK, Mathela CS (2011) Chemical diversity in Mentha spicata L. with antioxidant and fumigation activity of essential oils. Nat Prod Commun 6(9):1373–1378

    CAS  PubMed  Google Scholar 

  • Culliney TW, Pimentel D, Pimentel MH (1992) Pesticides and natural toxicants in foods. Agric Ecosyst Environ 41(3–4):297–320

    Article  CAS  Google Scholar 

  • Das AC, Mukherjee D (2000) Influence of insecticides on microbial transformation of nitrogen and phosphorus in typic orchra gualf soil. J Agric Food Chem 48:3728–3732

    Article  CAS  PubMed  Google Scholar 

  • Davies TGE, Field LM, Williamson MS (2012) The re-emergence of the bed bug as a nuisance pest: implications of resistance to the pyrethroid insecticides. Med Vet Entomol 26:241–254

    Article  CAS  PubMed  Google Scholar 

  • Deka SC, Barman N, Baruah AALH (2004) Monitoring of pesticide residues in feed, fodder and butter in Assam. Pestic Res J 16(1):86–89

    CAS  Google Scholar 

  • Demanou J, Sharma S, Weber A, Wilke BM, Njine T, Monkiedje A, Munch JC, Schloter M (2006) Shifts in microbial community functions and nitrifying communities as a result of combined application of copper and mefenoxam. FEMS Microbiol Lett 260:55–62

    Article  CAS  PubMed  Google Scholar 

  • Favari L, Lopez E, Martinez-Tabche L, Dıaz-Pardo E (2002) Effect of insecticides on plankton and fish of Ignacio Ramirez reservoir (Mexico): a biochemical and biomagnifications study. Ecotoxicol Environ Saf 51:177–186

    Article  CAS  PubMed  Google Scholar 

  • Garcia C, Hernandez T, Costa F (1997) Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun Soil Sci Plant Anal 28:123–134

    Article  CAS  Google Scholar 

  • Ghananand T, Prasad CS, Lok N (2011) Effect of insecticides, bio-pesticides and botanicals on the population of natural enemies in brinjal ecosystem. Vegetos 24:40–44

    Google Scholar 

  • Goswami S, Kanyal J, Prakash O, Kumar R, Rawat DS, Srivastava RM, Pant AK (2019) Chemical composition, antioxidant, antifungal and antifeedant activity of the salvia reflexa hornem. essential oil. Asian J Appl Sci 12(4):185–191

    Article  CAS  Google Scholar 

  • Grasman KA, Scanlon PF, Fox GA (1998) Reproductive and physiological effects of environmental contaminants in fish-eating birds of the Great Lakes: a review of historical trends. In: Trends in levels and effects of persistent toxic substances in the Great Lakes. Springer, New York, NY, pp 117–145

    Chapter  Google Scholar 

  • Guler GO, Cakmak YS, Dagli Z, Aktumsek A, Ozparlak H (2010) Organochlorine pesticide residues in wheat from Konya region, Turkey. Food Chem Toxicol 48:1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Hayo MG, Werf VD (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96

    Article  Google Scholar 

  • Hunter K (1995) The poisoning of non-target animals. In: Best GA, Ruthven AD (eds) Pesticides - developments, impacts, and controls. The Royals Society of Chemistry, London, p 86

    Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • Kos M, van Loon JJ, Dicke M, Vet LE (2009) Transgenic plants as vital components of integrated pest management. Trends Biotechnol 27:621–627

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kranthi S, Nitharwal M, Jat SL, Monga D (2012) Influence of pesticides and application methods on pest and predatory arthropods associated with cotton. Phytoparasitica 40:417–424

    Article  CAS  Google Scholar 

  • Kumar R, Chandini, Kumar R, Prakash O (2018) Retrospects on synthetic pesticides use in agriculture. In: Naresh RK (ed) Advances in agricultural sciences, vol 7. AkiNik Publication, New Delhi, pp 97–117

    Google Scholar 

  • Kumar R, Kumar R, Anjum B, Prakash O, Joshi A, Pant AK, Patel C, Srivastava RM (2019) Phytochemical analysis, in-vitro antioxidant, antiinflammatory and insect antifeeding activity of methanolic extract of Limnophila indica (L.) Druce. Int J Chem Stud 7(1):1691–1696

    CAS  Google Scholar 

  • Lah K (2011) Effects of pesticides on human health. In: Toxipedia

    Google Scholar 

  • Llasera MPG, González MB (2001) Presence of carbamate pesticides in Environmental waters from the northwest of Mexico: determination by liquid chromatography. Water Res 35(8):1933–1940

    Article  Google Scholar 

  • Lupwayi NZ, Harker KN, Clayton GW, O’Donovan JT, Blackshaw RE (2009) Soil microbial response to herbicides applied to glyphosate-resistant canola. Agric Ecosyst Environ 129:171–176

    Article  CAS  Google Scholar 

  • Madhuri RJ, Rangaswamy V (2002) Influence of selected insecticides on phosphatase activity in groundnut (Arachis hypogeae L.) soil. J Environ Biol 23:393–397

    CAS  PubMed  Google Scholar 

  • Mayanglambam T, Vig K, Singh DK (2005) Quinalphos persistence and leaching under field conditions and effects of residues on dehydrogenase and alkaline phosphomonoesterases activities in soil. Bull Environ Contam Toxicol 75:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meyers L, Bull J (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557

    Article  Google Scholar 

  • Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55:197–205

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Fernández V, Garcia MA, Marina ML (2017) Characteristics and enantiomeric analysis of chiralpyrethroids. J Chromatogr 12(17):968–989

    Google Scholar 

  • Rawat A, Prakash O, Kumar R, Arya S, Srivastava RM (2021) Hedychium‌ spicatum Sm.: chemical composition with biological activities of methanolic and ethylacetate oleoresins from rhizomes. J Biol Act Prod Nat 11(3):269–288

    CAS  Google Scholar 

  • Relyea RA, Hoverman JT (2008) Interactive effects of predators and a pesticide on aquatic communities. Oikos 117:1647–1658

    Article  Google Scholar 

  • Romero E, Fernández-Bayo J, Díaz JMC, Nogale R (2010) Enzyme activities and diuron persistence in soil amended with vermin compost derived from spent grape marc and treated with urea. Appl Soil Ecol 44:198–204

    Article  Google Scholar 

  • Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33:103–121

    Article  CAS  Google Scholar 

  • Sannino F, Gianfreda L (2001) Pesticide influence on soil enzymatic activities. Chemosphere 45:417–425

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC, Ortiz R (2002) Host plant resistance to insects: an eco-friendly approach for pest management and environment conservation. J Environ Biol 23:111–135

    CAS  PubMed  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2015) Exogenous application of 28-homobrassinolide modulates by dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. J Plant Growth Regul 34:509–518

    Article  CAS  Google Scholar 

  • Singh B, Mandal K (2013) Environmental impact of pesticides belonging to newer chemistry. In: Dhawan AK, Singh B, Brar-Bhullar M, Arora R (eds) Integrated pest management. Scientific Publishers, Jodhpur, pp 152–190

    Google Scholar 

  • Sirotkina M, Lyagin I, Efremenko E (2012) Hydrolysis of organophosphorus pesticides in soil: new opportunities with ecocompatible immobilized His6-OPH. Int Biodeterior Biodegradation 68:18–23

    Article  CAS  Google Scholar 

  • Sultana J, Syed JH, Mahmood A, Ali U, Rehman MYA, Malik RN, Li J, Zhang G (2014) Investigation of organochlorine pesticides from the Indus Basin, Pakistan: sources, air–soil exchange fluxes and risk assessment. Sci Total Environ 497:113–122

    Article  PubMed  Google Scholar 

  • Thapa P, Prakash O, Rawat A, Kumar R, Srivastava RM, Rawat DS, Pant AK (2020) Essential oil composition, antioxidant, anti-inflammatory, insect antifeedant and sprout suppressant activity in essential oil from aerial parts of Cotinus coggygria Scop. J Essent Oil Bear Plants 23(1):65–76

    Article  CAS  Google Scholar 

  • Tierney KB, Baldwin DH, Hara TJ, Ross PS, Scholz NL, Kennedy CJ (2010) Olfactory toxicity in fishes. Aquat Toxicol 96:2–26

    Article  CAS  PubMed  Google Scholar 

  • Van Zwieten L, Ayres MR, Morris SG (2003) Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environ Pollut 124:331–339

    Article  PubMed  Google Scholar 

  • Wu JY, Smart MD, Anelli CM, Sheppard WS (2012) Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia). J Invertebr Pathol 109:326–329

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arya, S., Kumar, R., Prakash, O., Rawat, A., Pant, A.K. (2022). Impact of Insecticides on Soil and Environment and Their Management Strategies. In: Naeem, M., Bremont, J.F.J., Ansari, A.A., Gill, S.S. (eds) Agrochemicals in Soil and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-9310-6_10

Download citation

Publish with us

Policies and ethics