Skip to main content

Part of the book series: Monographs in Mathematical Economics ((MOME,volume 5))

  • 322 Accesses

Abstract

In this chapter we discuss turnpike properties and optimality criteria over an infinite horizon for two classes of dynamic optimization problems. Problems of the first class determine a general model of economic growth, while problems from the second class are related to the Robinson–Solow–Srinivasan model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artstein Z, Leizarowitz A (1985) Tracking periodic signals with the overtaking criterion, IEEE Trans. on Automatic Control: AC-30, 1123–1126.

    Article  MATH  Google Scholar 

  2. Aseev SM, Krastanov MI, Veliov VM (2017) Optimality conditions for discrete-time optimal control on infinite horizon, Pure and Applied Functional Analysis: 2, 395–409.

    MathSciNet  MATH  Google Scholar 

  3. Aseev SM, Veliov VM (2012) Maximum principle for infinite-horizon optimal control problems with dominating discount, Dynamics Contin. Discrete Impuls. Syst., Series B: 19, 43–63.

    MathSciNet  MATH  Google Scholar 

  4. Aseev SM, Veliov VM (2012) Necessary optimality conditions for improper infinite-horizon control problems, Operations Research Proceedings, 21–26.

    Google Scholar 

  5. Atsumi H (1965) Neoclassical growth and the efficient program of capital accumulation, Review of Economic Studies: 3, 127–136.

    Article  Google Scholar 

  6. Aubry S, Le Daeron PY (1983) The discrete Frenkel-Kontorova model and its extensions I, Physica D: 8, 381–422.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bachir M, Blot J (2015) Infinite dimensional infinite-horizon Pontryagin principles for discrete-time problems, Set-Valued and Variational Analysis: 23, 43–54.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bachir M, Blot J (2017) Infinite dimensional multipliers and Pontryagin principles for discrete-time problems, Pure and Applied Functional Analysis: 2, 411–426.

    MathSciNet  MATH  Google Scholar 

  9. Baumeister J, Leitao A, Silva GN (2007) On the value function for nonautonomous optimal control problem with infinite horizon, Syst. Control Lett.: 56, 188–196.

    Article  MathSciNet  MATH  Google Scholar 

  10. Blot J (2009) Infinite-horizon Pontryagin principles without invertibility, J. Nonlinear Convex Anal.: 10, 177–189.

    MathSciNet  MATH  Google Scholar 

  11. Blot J, Cartigny P (2000) Optimality in infinite-horizon variational problems under sign conditions, J. Optim. Theory Appl.: 106, 411–419.

    Article  MathSciNet  MATH  Google Scholar 

  12. Blot J, Hayek N (2000) Sufficient conditions for infinite-horizon calculus of variations problems, ESAIM Control Optim. Calc. Var.: 5, 279–292.

    Article  MathSciNet  MATH  Google Scholar 

  13. Blot J, Hayek N (2014) Infinite-horizon optimal control in the discrete-time framework. SpringerBriefs in Optimization, New York.

    Book  MATH  Google Scholar 

  14. Brock WA (1970) On existence of weakly maximal programmes in a multi-sector economy, Review of Economic Studies: 37, 275–280.

    Article  MATH  Google Scholar 

  15. Carlson DA (1990) The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay, SIAM Journal on Control and Optimization: 28, 402–422.

    Article  MathSciNet  MATH  Google Scholar 

  16. Carlson DA, Haurie A, Leizarowitz A (1991) Infinite horizon optimal control. Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  17. Cartigny P, Michel P (2003) On a sufficient transversality condition for infinite horizon optimal control problems, Automatica J. IFAC: 39, 1007–1010.

    Article  MathSciNet  MATH  Google Scholar 

  18. Coleman BD, Marcus M, Mizel VJ (1992) On the thermodynamics of periodic phases, Arch. Rational Mech. Anal.: 117, 321–347.

    Article  MathSciNet  MATH  Google Scholar 

  19. Damm T, Grune L, Stieler M, Worthmann K (2014) An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM Journal on Control and Optimization: 52, 1935–1957.

    Article  MathSciNet  MATH  Google Scholar 

  20. Deng L, Fujio M, Khan M Ali (2019) Optimal growth in the Robinson-Shinkai-Leontief model: the case of capital-intensive consumption goods. Stud. Nonlinear Dyn. Econom.: 23, 18 pp.

    Google Scholar 

  21. De Oliveira VA, Silva GN (2009) Optimality conditions for infinite horizon control problems with state constraints, Nonlinear Analysis: 71, 1788–1795.

    Article  MathSciNet  MATH  Google Scholar 

  22. Gaitsgory V, Grune L, Thatcher N (2015) Stabilization with discounted optimal control, Systems and Control Letters: 82, 91–98.

    Article  MathSciNet  MATH  Google Scholar 

  23. Gaitsgory V, Mammadov M, Manic L (2017) On stability under perturbations of long-run average optimal control problems, Pure and Applied Functional Analysis: 2, 461–476.

    MathSciNet  MATH  Google Scholar 

  24. Gaitsgory V, Parkinson A, Shvartsman I (2017) Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time, Discrete Contin. Dyn. Syst. Ser. B: 22, 3821–3838.

    MathSciNet  MATH  Google Scholar 

  25. Gaitsgory V, Rossomakhine S, Thatcher N (2012) Approximate solution of the HJB inequality related to the infinite horizon optimal control problem with discounting, Dynamics Contin. Discrete Impuls. Syst., Series B: 19, 65–92.

    MathSciNet  MATH  Google Scholar 

  26. Gale D (1967) On optimal development in a multi-sector economy, Rev. Econ. Stud.: 34, 1–18.

    Article  Google Scholar 

  27. Glizer VY, Kelis O (2017) Upper value of a singular infinite horizon zero-sum linear-quadratic differential game, Pure and Applied Functional Analysis: 2, 511–534.

    MathSciNet  MATH  Google Scholar 

  28. Gugat M (2019) A turnpike result for convex hyperbolic optimal boundary control problems, Pure and Applied Functional Analysis: 4, 849–866.

    MathSciNet  MATH  Google Scholar 

  29. Gugat M, Trelat E, Zuazua E (2016) Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property, Systems Control Lett.: 90, 61–70.

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo X, Hernandez-Lerma O (2005) Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates, Bernoulli: 11, 1009–1029.

    Article  MathSciNet  MATH  Google Scholar 

  31. Hammond PJ (1974) Consistent planning and intertemporal welfare economics. University of Cambridge, Cambridge.

    Google Scholar 

  32. Hammond PJ (1975) Agreeable plans with many capital goods, Rev. Econ. Stud.: 42, 1–14.

    Article  MATH  Google Scholar 

  33. Hammond PJ, Mirrlees JA (1973) Agreeable plans. Models of economic growth (J Mirrlees and NH Stern, eds), Wiley, New York, 283–299.

    Google Scholar 

  34. Hayek (2011) Infinite horizon multiobjective optimal control problems in the discrete time case, Optimization: 60, 509–529.

    Article  MathSciNet  MATH  Google Scholar 

  35. Hritonenko NV, Yatsenko Yu (1997) Turnpike theorems in an integral dynamic model of economic restoration, Cybernet. Systems Anal.: 33, 259–273.

    Article  MathSciNet  Google Scholar 

  36. Hritonenko N, Yatsenko Yu (2005) Turnpike and optimal trajectories in integral dynamic models with endogenous delay, J. Optim. Theory Appl.: 127, 109–127.

    Article  MathSciNet  MATH  Google Scholar 

  37. Jasso-Fuentes H, Hernandez-Lerma O (2008) Characterizations of overtaking optimality for controlled diffusion processes, Appl. Math. Optim.: 57, 349–369.

    Article  MathSciNet  MATH  Google Scholar 

  38. Khan M Ali, Mitra T (2005) On choice of technique in the Robinson-Solow-Srinivasan model, International Journal of Economic Theory: 1, 83–110.

    Google Scholar 

  39. Khan M Ali, Mitra T (2006) Optimal growth in the two-sector RSS model: a continuous time analysis, Proceedings of the Seventh Portugese Conference on Automatic Control, Electronic publication.

    Google Scholar 

  40. Khan M Ali, Mitra T (2006) Undiscounted optimal growth in the two-sector Robinson-Solow-Srinivasan model: a synthesis of the value-loss approach and dynamic programming, Econom. Theory: 29, 341–362.

    Google Scholar 

  41. Khan M Ali, Mitra T (2006) Discounted optimal growth in the two-sector RSS model: a geometric investigation, Advances in Mathematical Economics: 8, 349–381.

    Google Scholar 

  42. Khan M Ali, Mitra T (2007) Optimal growth in a two-sector RSS model without discounting: a geometric investigation, Jpn. Econ. Rev.: 58, 191–225.

    Google Scholar 

  43. Khan M Ali, Mitra T (2007) Optimal growth under discounting in the two-sector Robinson-Solow-Srinivasan model: a dynamic programming approach, J. Difference Equ. Appl.: 13, 151–168.

    Google Scholar 

  44. Khan M Ali, Mitra T (2008) Growth in the Robinson-Solow-Srinivasan model: undiscounted optimal policy with a strictly concave welfare function, J. Math. Econom.: 44, 707–732.

    Google Scholar 

  45. Khan M Ali, Mitra T (2012) Impatience and dynamic optimal behavior: a bifurcation analysis of the Robinson-Solow-Srinivasan model, Nonlinear Anal.: 75, 1400–1418.

    Google Scholar 

  46. Khan M Ali, Mitra T (2013) Discounted optimal growth in a two-sector RSS model: a further geometric investigation, Advances in Mathematical Economics: 17, 39–70.

    Google Scholar 

  47. Khan M Ali, Piazza A (2010) On the non-existence of optimal programs in the Robinson-Solow-Srinivasan (RSS) model, Econom. Lett.: 109, 94–98.

    Google Scholar 

  48. Khan MA, Piazza A (2011) The concavity assumption on felicities and asymptotic dynamics in the RSS model, Set-Valued Var. Anal.: 19, 135–156.

    Article  MathSciNet  MATH  Google Scholar 

  49. Khan MA, Piazza A (2011) An overview of turnpike theory: towards the discounted deterministic case, Advances in Mathematical Economics: 14, 39–67.

    Article  MathSciNet  MATH  Google Scholar 

  50. Khan M Ali, Zaslavski AJ (2007) On a uniform turnpike of the third kind in the Robinson-Solow-Srinivasan model, Journal of Economics: 92, 137–166.

    Google Scholar 

  51. Khan M Ali, Zaslavski AJ (2009) On existence of optimal programs: the RSS model without concavity assumptions on felicities, J. Mathematical Economics: 45, 624–633.

    Google Scholar 

  52. Khan M Ali, Zaslavski AJ (2010) On two classical turnpike results for the Robinson-Solow-Srinivisan (RSS) model, Adv. in Math. Econom.: 13, 47–97.

    Google Scholar 

  53. Khan M Ali, Zaslavski AJ (2010) On locally optimal programs in the RSS (Robinson-Solow-Srinivasan) model, Journal of Economics: 99, 65–92.

    Google Scholar 

  54. Khlopin DV (2017) On Lipschitz continuity of value functions for infinite horizon problem, Pure and Applied Functional Analysis: 2, 535–552.

    MathSciNet  MATH  Google Scholar 

  55. Kolokoltsov V, Yang W (2012) The turnpike theorems for Markov games, Dynamic Games and Applications: 2, 294–312.

    Article  MathSciNet  MATH  Google Scholar 

  56. Leizarowitz A (1985) Infinite horizon autonomous systems with unbounded cost, Appl. Math. and Opt.: 13, 19–43.

    Google Scholar 

  57. Leizarowitz A (1986) Tracking nonperiodic trajectories with the overtaking criterion, Appl. Math. and Opt.: 14, 155–171.

    Article  MathSciNet  MATH  Google Scholar 

  58. Leizarowitz A, Mizel VJ (1989) One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal.: 106, 161–194.

    Article  MathSciNet  MATH  Google Scholar 

  59. Lykina V, Pickenhain S, Wagner M (2008) Different interpretations of the improper integral objective in an infinite horizon control problem, J. Math. Anal. Appl.: 340, 498–510.

    Article  MathSciNet  MATH  Google Scholar 

  60. Makarov VL, Rubinov AM (1977) Mathematical theory of economic dynamics and equilibria. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  61. Malinowska AB, Martins N, Torres DFM (2011) Transversality conditions for infinite horizon variational problems on time scales, Optimization Lett.: 5, 41–53.

    Article  MathSciNet  MATH  Google Scholar 

  62. Mammadov M (2014) Turnpike theorem for an infinite horizon optimal control problem with time delay, SIAM Journal on Control and Optimization: 52, 420–438.

    Article  MathSciNet  MATH  Google Scholar 

  63. Marcus M, Zaslavski AJ (1999) On a class of second order variational problems with constraints, Israel J. Math.: 111, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  64. Marcus M, Zaslavski AJ (1999) The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré, Anal. non linéaire: 16, 593–629.

    Article  MathSciNet  MATH  Google Scholar 

  65. Marcus M, Zaslavski AJ (2002) The structure and limiting behavior of locally optimal minimizers, Ann. Inst. H. Poincaré, Anal. non linéaire: 19, 343–370.

    Article  MathSciNet  MATH  Google Scholar 

  66. McKenzie LW (1976) Turnpike theory, Econometrica: 44, 841–866.

    Article  MathSciNet  MATH  Google Scholar 

  67. Mordukhovich BS (1990) Minimax design for a class of distributed parameter systems, Automat. Remote Control: 50, 1333–1340.

    Google Scholar 

  68. Mordukhovich BS (2011) Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions, Appl. Analysis: 90, 1075–1109.

    Article  MathSciNet  MATH  Google Scholar 

  69. Mordukhovich BS, Nam NM (2014) An easy path to convex analysis and applications. Morgan Claypool Publishers, San Rafael, CA.

    Book  MATH  Google Scholar 

  70. Mordukhovich BS, Shvartsman I (2004) Optimization and feedback control of constrained parabolic systems under uncertain perturbations, Optimal control, stabilization and nonsmooth analysis. Lecture Notes Control Inform. Sci., Springer, 121–132.

    Book  MATH  Google Scholar 

  71. Ocana Anaya E, Cartigny P, Loisel P (2009) Singular infinite horizon calculus of variations. Applications to fisheries management, J. Nonlinear Convex Anal.: 10, 157–176.

    Google Scholar 

  72. Okishio N (1966) Technical choice under full employment in a socialist economy, Economic Journal: 76, 585–592.

    Article  Google Scholar 

  73. Pickenhain S, Lykina V, Wagner M (2008) On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems, Control Cybernet.: 37, 451–468.

    MathSciNet  MATH  Google Scholar 

  74. Porretta A, Zuazua E (2013) Long time versus steady state optimal control, SIAM J. Control Optim.: 51, 4242–4273.

    Article  MathSciNet  MATH  Google Scholar 

  75. Reich S, Zaslavski AJ (2014) Genericity in nonlinear analysis, Springer, New York.

    Book  MATH  Google Scholar 

  76. Robinson J (1960) Exercises in economic analysis, MacMillan, London.

    Google Scholar 

  77. Robinson J (1969) A model for accumulation proposed by J.E. Stiglitz, Economic Journal: 79, 412–413.

    Google Scholar 

  78. Rockafellar RT (1970) Convex analysis, Princeton University Press, Princeton, NJ.

    Book  MATH  Google Scholar 

  79. Rubinov AM (1980) Turnpike sets in discrete disperse dynamical systems, Sib. Math. J.: 21, 136–146.

    MATH  Google Scholar 

  80. Rubinov AM (1980) Multivalued mappings and their applications in economic mathematical problems, Nauka, Leningrad.

    Google Scholar 

  81. Rubinov AM (1984) Economic dynamics, J. Soviet Math.: 26, 1975–2012.

    Article  MATH  Google Scholar 

  82. Sagara N (2018) Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: an existence result, Discrete Contin. Dyn. Syst. Ser. S: 11, 1219–1232.

    MathSciNet  MATH  Google Scholar 

  83. Samuelson PA (1965) A catenary turnpike theorem involving consumption and the golden rule, Amer. Econom. Rev.: 55, 486–496.

    Google Scholar 

  84. Semenov KE, Hritonenko NV, Yatsenko Yu (1992) Turnpike properties of the optimal periods of the service of funds, Dokl. Akad. Nauk Ukrainy: 173, 76–80.

    MathSciNet  Google Scholar 

  85. Solow RM (1962) Substitution and fixed proportions in the theory of capital, Review of Economic Studies: 29, 207–218.

    Article  Google Scholar 

  86. Srinivasan TN (1962) Investment criteria and choice of techniques of production, Yale Economic Essays: 1, 58–115.

    Google Scholar 

  87. Stiglitz JE (1968) A note on technical choice under full employment in a socialist economy, Economic Journal: 78, 603–609.

    Article  Google Scholar 

  88. Stiglitz JE (1970) Reply to Mrs. Robinson on the choice of technique, Economic Journal: 80, 420–422.

    Google Scholar 

  89. Stiglitz JE (1973) Recurrence of techniques in a dynamic economy, Models of economic growth (J Mirrlees and NH Stern, eds), Wiley, New York, 283–299.

    Google Scholar 

  90. Trelat E, Zhang C, Zuazua E (2018) Optimal shape design for 2D heat equations in large time, Pure and Applied Functional Analysis: 3, 255–269.

    MathSciNet  MATH  Google Scholar 

  91. von Weizsacker CC (1965) Existence of optimal programs of accumulation for an infinite horizon, Rev. Econ. Studies: 32, 85–104.

    Article  Google Scholar 

  92. Zaslavski AJ (1982) Turnpike sets of continuous transformations in compact metric spaces, Sib. Math. J.: 23, 136–146.

    Article  Google Scholar 

  93. Zaslavski AJ (1987) Ground states in Frenkel-Kontorova model, Math. USSR Izvestiya: 29, 323–354.

    Article  MATH  Google Scholar 

  94. Zaslavski AJ (2005) Optimal programs in the RSS model, International Journal of Economic Theory: 1, 151–165.

    Article  Google Scholar 

  95. Zaslavski AJ (2005) The turnpike property of discrete-time control problems arising in economic dynamics, Discrete and Continuous Dynamical Systems, B: 5, 2005, 861–880.

    Google Scholar 

  96. Zaslavski AJ (2006) Turnpike properties in the calculus of variations and optimal control. Springer, New York.

    MATH  Google Scholar 

  97. Zaslavski AJ (2006) Good programs in the RSS model with a nonconcave utility function, J. of Industrial and Management Optimization: 2, 399–423.

    Article  MathSciNet  MATH  Google Scholar 

  98. Zaslavski AJ (2007) Turnpike results for a discrete-time optimal control systems arising in economic dynamics, Nonlinear Anal.: 67, 2024–2049.

    Article  MathSciNet  MATH  Google Scholar 

  99. Zaslavski AJ (2008) A turnpike result for a class of problems of the calculus of variations with extended-valued integrands, J. Convex Analysis: 15, 869–890.

    MathSciNet  MATH  Google Scholar 

  100. Zaslavski AJ (2009) Structure of approximate solutions of variational problems with extended-valued convex integrands, ESAIM: Control, Optimization and the Calculus of Variations: 15, 872–894.

    MathSciNet  MATH  Google Scholar 

  101. Zaslavski AJ (2009) The structure of good programs in the RSS Model, Proceedings of the annual meeting at the Kyoto University: 1654, 166–178, Departmental Bulletin Paper, repository.kulib.kyoto-u.ac.jp

    Google Scholar 

  102. Zaslavski AJ (2009) Good solutions for a class of infinite horizon discrete-time optimal control problems, Taiwanese J. Math.: 13, 1637–1669.

    Article  MathSciNet  MATH  Google Scholar 

  103. Zaslavski AJ (2009) Turnpike results for a class of infinite horizon discrete-time optimal control problems arising in economic dynamics, Set-Valued and Variational Analysis: 17, 285–318.

    Article  MathSciNet  MATH  Google Scholar 

  104. Zaslavski AJ (2009) Existence and structure of solutions for an infinite horizon optimal control problem arising in economic dynamics, Advances in Differential Equations: 14, 477–496.

    MathSciNet  MATH  Google Scholar 

  105. Zaslavski AJ (2010) Optimal solutions for a class of infinite horizon variational problems with extended-valued integrands, Optimization: 59, 181–197.

    Article  MathSciNet  MATH  Google Scholar 

  106. Zaslavski AJ (2010) Good locally maximal programs for the Robinson-Solow-Srinivasan (RSS) model, Advances in Mathematical Economics: 13, 161–176.

    Article  MATH  Google Scholar 

  107. Zaslavski AJ (2010) Overtaking optimal solutions for a class of infinite horizon discrete-time optimal control problems, Dynamics of Continuous, Discrete and Impulsive Systems, Ser. B: 17, 607–620.

    MATH  Google Scholar 

  108. Zaslavski AJ (2010) Locally maximal solutions of control systems arising in economic dynamics, Communications on Applied Nonlinear Analysis: 17, 61–68.

    MathSciNet  MATH  Google Scholar 

  109. Zaslavski AJ (2010) Structure of approximate solutions for discrete-time control systems arising in economic dynamics, Nonlinear Analysis: 73, 952–970.

    Article  MathSciNet  MATH  Google Scholar 

  110. Zaslavski AJ (2011) Two turnpike results for a continuous-time optimal control systems, Proceedings of an international conference, Complex Analysis and Dynamical Systems IV: function theory and optimization: 553, 305–317.

    Google Scholar 

  111. Zaslavski AJ (2011) Stability of a turnpike phenomenon for the Robinson-Solow-Srinivasan model, Dynamical Systems and Applications: 20, 25–44.

    MathSciNet  MATH  Google Scholar 

  112. Zaslavski AJ (2011) A turnpike property of approximate solutions of an optimal control problem arising in economic dynamics, Dynamic Systems and Applications: 20, 2011, 395–422.

    Google Scholar 

  113. Zaslavski AJ (2012) Weakly agreeable programs for the Robinson-Solow-Srinivasan (RSS) model, Optimization theory and related topics, Contemp. Math.: 568, 259–271.

    Article  MATH  Google Scholar 

  114. Zaslavski AJ (2013) Structure of solutions of variational problems. SpringerBriefs in Optimization, New York.

    Book  MATH  Google Scholar 

  115. Zaslavski AJ (2013) Structure of approximate solutions of optimal control problems. SpringerBriefs in Optimization, New York.

    Book  MATH  Google Scholar 

  116. Zaslavski AJ (2013) On turnpike properties of approximate optimal programs of the discrete-time Robinson-Solow-Srinivasan model, Communications in Applied Analysis: 17, 129–145.

    MathSciNet  MATH  Google Scholar 

  117. Zaslavski AJ (2013) On a class of discrete-time optimal control problems arising in economic dynamics, Pan-American Mathematical Journal: 23, 1–12.

    MathSciNet  MATH  Google Scholar 

  118. Zaslavski AJ (2013) Stability of the turnpike phenomenon for a convex optimal control problem arising in economic dynamics, Communications in Applied Analysis: 17, 271–288.

    MathSciNet  MATH  Google Scholar 

  119. Zaslavski AJ (2013) Existence and structure of solutions for a class of optimal control problems arising in economic dynamics, Pan-American Mathematical Journal: 23, 4, 1–22.

    Google Scholar 

  120. Zaslavski AJ (2013) Necessary and sufficient conditions for turnpike properties of solutions of optimal control systems arising in economic dynamics, Dynamics of Continuous, Discrete and Impulsive Systems, Ser. B Appl. Algorithms: 20, 391–420.

    MathSciNet  MATH  Google Scholar 

  121. Zaslavski AJ (2014) Turnpike phenomenon and infinite horizon optimal control. Springer Optimization and Its Applications, Springer, Cham.

    MATH  Google Scholar 

  122. Zaslavski AJ (2016) Structure of solutions of optimal control problems on large intervals: a survey of recent results. Pure and Applied Functional Analysis: 1, 123–158.

    MathSciNet  Google Scholar 

  123. Zaslavski AJ (2017) Discrete-time optimal control and games on large intervals. Springer Optimization and Its Applications, Springer, Cham.

    Google Scholar 

  124. Zaslavski AJ (2018) Equivalence of optimality criterions for discrete time optimal control problems, Pure and Applied Functional Analysis: 3, 505–517.

    MathSciNet  MATH  Google Scholar 

  125. Zaslavski AJ (2019) Turnpike conditions in infinite dimensional optimal control. Springer Optimization and Its Applications, Springer, Cham.

    Google Scholar 

  126. Zaslavski AJ (2021) Turnpike theory for the Robinson-Solow-Srinivasan model, Springer Optimization and Its Applications, Springer, Cham.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaslavski, A.J. (2022). Introduction. In: Optimal Control Problems Arising in Mathematical Economics. Monographs in Mathematical Economics, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-16-9298-7_1

Download citation

Publish with us

Policies and ethics