Skip to main content

Hybrid Blockchain-Enabled Security in Cloud Storage Infrastructure Using ECC and AES Algorithms

  • Chapter
  • First Online:
Blockchain based Internet of Things

Abstract

Due to the high growth of Internet of Things and cloud computing services it has brought great changes within the human lifestyle in various fields such as (medical, agricultural, educational, military, environmental, etc.). So, it was necessary to understand the building blocks’ basic of the Internet of Things and identify weaknesses and data security of user. Blockchain plays an important role in the implementation of security aspects in cloud computing. In this work, we have analyzed the security aspects of data stored in the cloud through hybrid security system enabled with blockchain technology using cryptographic algorithms ECC and AES. Our framework is having higher security with more efficiency than others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banafa A (2018) IoT and blockchain convergence: benefits and challenges. IoT and blockchain convergence: benefits and challenges. IEEE Internet of Things

    Google Scholar 

  2. Esposito C, Castiglione A, Martini B, Choo KKR (2016) Cloud manufacturing: security, privacy, and forensic concerns. IEEE Cloud Comput 3(4). https://doi.org/10.1109/MCC.2016.79

  3. Modi C, Patel D, Borisaniya B, Patel A, Rajarajan M (2013) A survey on security issues and solutions at different layers of Cloud computing. J Supercomput 63(2). https://doi.org/10.1007/s11227-012-0831-5

  4. Wang C, Liu X, Li v (2012) Implementing a personal health record cloud platform using CIPHERTEXT-policy attribute-based encryption. In Proceedings of the 2012 4th international conference on intelligent networking and collaborative systems, INCoS 2012, pp 8–14. https://doi.org/10.1109/iNCoS.2012.65

  5. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl 1(1). https://doi.org/10.1007/s13174-010-0007-6

  6. Qian L, Luo Z, Du Y, Guo L (2009) Cloud computing: an overview. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 5931. LNCS, pp 626–631. https://doi.org/10.1007/978-3-642-10665-1_63

  7. Arutyunov VV (2012) Cloud computing: its history of development, modern state, and future considerations. Sci Tech Inf Process 39(3). https://doi.org/10.3103/S0147688212030082

  8. Ramey J, Rao PG (2011) The systematic literature review as a research genre. https://doi.org/10.1109/IPCC.2011.6087229

  9. Krishnan R (2017) ScholarWorks at WMU security and privacy in cloud computing. https://scholarworks.wmich.edu/masters_theses/919

  10. Singh A, Chatterjee K (2017) Cloud security issues and challenges: a survey. J Netw Comput Appl 79. https://doi.org/10.1016/j.jnca.2016.11.027

  11. Basu S et al (2018) Cloud computing security challenges & solutions-a survey. In 2018 IEEE 8th annual computing and communication workshop and conference, CCWC 2018, vol 2018. https://doi.org/10.1109/CCWC.2018.8301700

  12. Sharma R, Trivedi RK (2014) Literature review: cloud computing –security issues, solution and technologies. Int J Eng Res 3(4). https://doi.org/10.17950/ijer/v3s4/408

  13. Zhang R, Liu L (2010) Security models and requirements for healthcare application clouds. https://doi.org/10.1109/CLOUD.2010.62

  14. Santos N, Gummadi KP, Rodrigues R (2009) Towards trusted cloud computing

    Google Scholar 

  15. Jansen W, Grance T (2012) Guidelines on security and privacy in public cloud computing?. In Public cloud computing: security and privacy guidelines, pp 1–95

    Google Scholar 

  16. Piliouras T et al (2011) Trust in a cloud-based healthcare environment. https://doi.org/10.1109/CEWIT.2011.6135890

  17. Nyrönen et al TH (2012) Delivering ICT infrastructure for biomedical research. In ACM international conference proceeding series, pp 37–44. https://doi.org/10.1145/2361999.2362006

  18. Bokhari MU, Shallal QM, Tamandani YK (2016) Security and privacy issues in cloud computing. In Proceedings of the 10th INDIACom; 2016 3rd international conference on computing for sustainable global development, INDIACom 2016, pp 896–900. https://doi.org/10.5120/cae2017652617

  19. Bauer E, Adams R (2012) Reliability and availability of cloud computing

    Google Scholar 

  20. Hamdi M (2012) Security of cloud computing, storage, and networking. In Proceedings of the 2012 international conference on collaboration technologies and systems, CTS 2012, pp 1–5. https://doi.org/10.1109/CTS.2012.6261019

  21. Iankoulova I, Daneva M (2012) Cloud computing security requirements: a systematic review. https://doi.org/10.1109/RCIS.2012.6240421

  22. Bhushan K, Gupta BB (2017) Security challenges in cloud computing: state-of-art. Int J Big Data Intell 4(2):81. https://doi.org/10.1504/ijbdi.2017.083116

    Article  Google Scholar 

  23. Toosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput Surv 47(1). https://doi.org/10.1145/2593512

  24. Qevani E, Panagopoulou M, Stampoltas C, Tsitsipas A, Kyriazis D, Themistocleous M (2014) What can OpenStack adopt from a Ganeti-based open-source IaaS?. In IEEE international conference on cloud computing, CLOUD, pp 833–840. https://doi.org/10.1109/CLOUD.2014.115

  25. Hashizume K, Rosado DG, Fernández-Medina E, Fernandez EB (2013) An analysis of security issues for cloud computing. J Internet Serv Appl 4(1):1–13. https://doi.org/10.1186/1869-0238-4-5

    Article  Google Scholar 

  26. Ju J, Ya W, Fu J, Wu J, Lin Z (2010) Research on key technology in SaaS. In Proceedings-2010 international conference on intelligent computing and cognitive informatics, ICICCI 2010, pp 384–387. https://doi.org/10.1109/ICICCI.2010.120

  27. Subashini S, Kavitha V (2011) A survey on security issues in service delivery models of cloud computing. J Netw Comput Appl 34(1):1–11. https://doi.org/10.1016/j.jnca.2010.07.006

    Article  Google Scholar 

  28. Darwish MA, Yafi E, Almasri AH, Zuhairi MF (2018) Privacy and security of cloud computing: a comprehensive review of privacy and security of cloud computing: a comprehensive review of techniques and challenges. Int J Eng Technol 7(4.29):239–246. https://www.researchgate.net/profile/Marwan_Darwish4/publication/328927461_Privacy_and_Security_of_Cloud_Computing_A_Comprehensive_Review_of_Techniques_and_Challenges/links/5c4dcff9a6fdccd6b5cdbdbb/Privacy-and-Security-of-Cloud-Computing-A-Comprehensive-R

  29. Dahbur K, Mohammad B, Tarakji AB (2011) A survey of risks, threats and vulnerabilities in cloud computing. https://doi.org/10.1145/1980822.1980834

  30. Dawoud W, Takouna I, Meinel C (2010) Infrastructure as a service security: challenges and solutions

    Google Scholar 

  31. Kaaniche N (2014) La sécurité des données stockées dans un environnement Cloud , basée sur des mécanismes cryptographiques, p 201

    Google Scholar 

  32. Bhardwaj A, Subrahmanyam GVB, Avasthi V, Sastry H (2016) Security algorithms for cloud computing. Procedia Comput Sci 85:535–542. https://doi.org/10.1016/j.procs.2016.05.215

    Article  Google Scholar 

  33. Yassein MB, Aljawarneh S, Qawasmeh E, Mardini W, Khamayseh Y (2018) Comprehensive study of symmetric key and asymmetric key encryption algorithms. In Proceedings of 2017 international conference on engineering and technology, ICET 2017, vol 2018, pp 1–7. https://doi.org/10.1109/ICEngTechnol.2017.8308215

  34. Kulshrestha V, Verma S, Challa CRK (2017) A comprehensive evaluation of cryptographic algorithms in cloud computing. In Proceedings of the international conference on inventive computation technologies, ICICT 2016, vol 1. https://doi.org/10.1109/INVENTIVE.2016.7823268

  35. Mahto D, Yadav DK (2017) RSA and ECC: a comparative analysis. Int J Appl Eng Res 12(19):9053–9061

    Google Scholar 

  36. Gilbert H, Handschuh H (2004) Security analysis of SHA-256 and sisters. In Lecture Notes Computer Science (subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 3006, pp 175–193. https://doi.org/10.1007/978-3-540-24654-1_13

  37. Ben Ayed A (2017) A conceptual secure blockchain based electronic voting system. Int J Netw Secur Its Appl 9(3):01–09. https://doi.org/10.5121/ijnsa.2017.9301

  38. Wang S, Wang X, Zhang Y (2019) A secure cloud storage framework with access control based on blockchain. IEEE Access 7:112713–112725. https://doi.org/10.1109/ACCESS.2019.2929205

    Article  Google Scholar 

  39. Park JH, Park JH (2017) Blockchain security in cloud computing: use cases, challenges, and solutions. Symmetry (Basel) 9(8). https://doi.org/10.3390/sym9080164

  40. Kumar M, Singh AK, Suresh Kumar TV (2018) Secure log storage using blockchain and cloud infrastructure. https://doi.org/10.1109/ICCCNT.2018.8494085

  41. Banerjee M, Lee J, Choo KKR (2018) A blockchain future for internet of things security: a position paper. Digit Commun Netw 4(3):149–160. https://doi.org/10.1016/j.dcan.2017.10.006

    Article  Google Scholar 

  42. Timothy DP, Santra AK (2017) A hybrid cryptography algorithm for cloud computing security. In 2017 international conference on microelectronic devices, circuits and systems, ICMDCS 2017, vol 2017, pp 1–5. https://doi.org/10.1109/ICMDCS.2017.8211728

  43. Lin Q, Yan H, Huang Z, Chen W, Shen J, Tang Y (2018) An ID-based linearly homomorphic signature scheme and its application in blockchain. IEEE Access 6:20632–20640. https://doi.org/10.1109/ACCESS.2018.2809426

    Article  Google Scholar 

  44. Zikratov I, Kuzmin A, Akimenko V, Niculichev V, Yalansky L (2017) Ensuring data integrity using blockchain technology. In Conference of open innovation association, FRUCT, vol 2017, pp 534–539. https://doi.org/10.23919/FRUCT.2017.8071359

  45. Sukhodolskiy I, Zapechnikov S (2018) A blockchain-based access control system for cloud storage. In Proceedings of the 2018 IEEE conference of Russian young researchers in electrical and electronic engineering, ElConRus 2018, vol 2018, pp 1575–1578. https://doi.org/10.1109/EIConRus.2018.8317400

  46. Rifi N, Rachkidi E, Agoulmine N, Taher NC (2018) Towards using blockchain technology for IoT data access protection. In 2017 IEEE 17th international conference on ubiquitous wireless broadband, ICUWB 2017-Proceedings, vol 2018, pp 1–5. https://doi.org/10.1109/ICUWB.2017.8251003

  47. Raju S, Boddepalli S, Choudhury N, Yan Q, Deogun JS (2017) Design and analysis of elastic handoff in cognitive cellular networks. https://doi.org/10.1109/ICC.2017.7996835

  48. Liang X, Shetty S, Tosh D, Kamhoua C, Kwiat K, Njilla L (2017) ProvChain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. https://doi.org/10.1109/CCGRID.2017.8

  49. Puthal D, Malik N, Mohanty SP, Kougianos E, Yang C (2018) The blockchain as a decentralized security framework [Future Directions]. IEEE Consum Electron Mag 7(2):18–21. https://doi.org/10.1109/MCE.2017.2776459

    Article  Google Scholar 

  50. Gajra N, Khan SS, Rane P (2015) Private cloud security: secured user authenticatio by using enhanced algorithm hybrid. https://doi.org/10.1109/EIC.2015.7230712

  51. Liu L, Xu B (2018) Research on information security technology based on blockchain. In 2018 3rd IEEE international conference on cloud computing and big data analysis, ICCCBDA 2018, pp 380–384. https://doi.org/10.1109/ICCCBDA.2018.8386546

  52. Saritekin RA, Karabacak E, Durǧay Z, Karaarslan E (2018) Blockchain based secure communication application proposal: cryptouch. In 6th international symposium on digital forensic and security, ISDFS 2018-Proceeding, vol 2018. https://doi.org/10.1109/ISDFS.2018.8355380

  53. Guo R, Shi H, Zhao Q, Zheng D (2018) Secure Attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems. IEEE Access 6:11676–11686. https://doi.org/10.1109/ACCESS.2018.2801266

    Article  Google Scholar 

  54. Esposito C, De Santis A, Tortora G, Chang H, Choo KKR (2018) Blockchain: a panacea for healthcare cloud-based data security and privacy? IEEE Cloud Comput. 5(1):31–37. https://doi.org/10.1109/MCC.2018.011791712

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakro, M., Bisoy, S.K., Patel, A.K., Naal, M.A. (2022). Hybrid Blockchain-Enabled Security in Cloud Storage Infrastructure Using ECC and AES Algorithms. In: De, D., Bhattacharyya, S., Rodrigues, J.J.P.C. (eds) Blockchain based Internet of Things. Lecture Notes on Data Engineering and Communications Technologies, vol 112. Springer, Singapore. https://doi.org/10.1007/978-981-16-9260-4_6

Download citation

Publish with us

Policies and ethics