Skip to main content

Maize Breeding

  • Chapter
  • First Online:
Fundamentals of Field Crop Breeding

Abstract

Maize has emerged as an important crop for food, feed and various applications. Utilization of hybrid technology has resulted in a quantum jump in grain production worldwide. However, ever-increasing population pressure coupled with climate change warrant many fold increase in productivity in a shorter time frame. Emergence of newer diseases and insect-pests further pose a great challenge to even sustain the production. Malnutrition has become a major health issue, thereby causing severe socio-economic losses. However, discovery of new genes and quantitative trait loci (QTLs) for higher grain yield, plant architecture, resistance/tolerance to various biotic and abiotic stresses, nutritional quality and specialty traits, and also availability of suitable donors provide great opportunity to breed improved hybrids with higher productivity, better resilience to biotic and abiotic stresses, and higher nutritional quality. Genomics-assisted breeding, doubled haploid and gene editing technology provide great impetus to further accelerate the breeding cycle. Here, we discussed the present status, opportunities and challenges in maize breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulmalik RO, Menkir A, Meseka SK et al (2017) Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in West Africa. Front Plant Sci 8:841. https://doi.org/10.3389/fpls.2017.00841

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrama HA, Moussa ME (1996) Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89–97

    CAS  Google Scholar 

  • Anderson E, Brown WL (1952) Origin of corn belt maize and its genetic significance. In: Gowen JW (ed) Heterosis. Iowa State University Press, Ames, IA, pp 124–148

    Google Scholar 

  • Andorf C, Beavis WD, Hufford M et al (2019) Technological advances in maize breeding: past, present and future. Theor Appl Genet 32:817–849

    Google Scholar 

  • Awata LAO, Ifie BE, Danquah E et al (2021) Introgression of maize lethal necrosis resistance quantitative trait loci into susceptible maize populations and validation of the resistance under field conditions in Naivasha, Kenya. Front Plant Sci 12:649308. https://doi.org/10.3389/fpls.2021.649308

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayiga-Aluba J, Edema R, Tusiime G et al (2015) Response to two cycles of S1 recurrent selection for turcicum leave blight in an open pollinated maize variety population (Longe 5). Adv Appl Sci Res 6:4–12

    Google Scholar 

  • Babu R, Nair SK, Kumar A et al (2006) Mapping QTLs for popping ability in a popcorn× flint corn cross. Theor Appl Genet 112:1392–1399

    CAS  PubMed  Google Scholar 

  • Badu-Apraku B, Fakorede MAB (2017) Breeding for disease resistance in maize. In: Advances in genetic enhancement of early and extra-early maize for Sub-Saharan Africa. Springer, Cham, Switzerland, pp 379–410

    Google Scholar 

  • Bao JD, Yao JQ, Zhu JQ (2012) Identification of glutinous maize landraces and inbred lines with altered transcription of waxy gene. Mol Breed 30:1707–1714

    CAS  Google Scholar 

  • Baveja A, Muthusamy V, Panda KK et al (2021) Development of multinutrient-rich biofortified sweet corn hybrids through genomics-assisted selection of shrunken2, opaque2, lcyE and crtRB1 genes. J Appl Genet. https://doi.org/10.1007/s13353-021-00633-4

  • Beadle GW (1939) Teosinte and the origin of maize. J Hered 30:245–247

    Google Scholar 

  • Beal JF (1881) Report of professor of botany and horticulture. Michigan Board Agric, Lansing, USA, pp 287–288

    Google Scholar 

  • Bergquist RR (1979) Selection for disease resistance in a maize breeding programme. II. Introgression of an alien genome from Tripsacum dactyloides conditioning resistance in Zea mays. In: Proceedings of the tenth meeting of the Maize and Sorghum Section of Eucarpia, 17–19 Sept 1979, Varna Bulgaria, pp 200–206

    Google Scholar 

  • Bergquist RR (1981) Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi. Phytopathology 71:518–520

    Google Scholar 

  • Beyene Y, Semagn K, Mugo S et al (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Google Scholar 

  • Bhat JS, Gadag RN, Gogoi RB et al (2012) Field screening of maize genotypes against maydis leaf blight and turcicum leaf blight. In: Paper presented (oral) at the international conference on plant health management for food security, November 28–30, 2012, Hyderabad, India

    Google Scholar 

  • Bhat JS, Mukri G, Patil BS (2017) Turcicum leaf blight resistance in maize: field screening of new inbreds and hybrids. Int Adv Res J Sci Eng 6:141–149

    Google Scholar 

  • Bhatt V, Muthusamy V, Jha S et al (2018) Development of low phytic acid maize through marker assisted introgression of lpa1–1 and lpa2–1 genes. In: Abstracts ‘13th Asian Maize conference on and expert consultation on Maize for food, feed, nutrition and environmental security’, Ludhiana, India, October 8–10, 2018. CIMMYT, Mexico, pp 143–144

    Google Scholar 

  • Bhave MR, Lawrence S, Barton C et al (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2:581–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchez A, Hospital F, Causse M et al (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Saltzman A, Birol E (2019) Improving nutrition through biofortification. In: Fan S, Yosef S, Pandya-Lorch R (eds) Agriculture for improved nutrition: seizing the momentum. CABI, Wallingford, pp 47–57

    Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581

    CAS  PubMed  Google Scholar 

  • Chaikam V, Martinez L, Melchinger AE et al (2016) Development and validation of red root marker-based haploid inducers in maize. Crop Sci 56:1678–1688

    CAS  Google Scholar 

  • Chaikam V, Nair SK, Martinez L et al (2018) Marker-assisted breeding of improved maternal haploid inducers in maize for the tropical/subtropical regions. Front Plant Sci 9:1527. https://doi.org/10.3389/fpls.2018.01527

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaikam V, Molenaar W, Melchinger AE et al (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132:3227–3243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalyk ST (1999) Creating new haploid-inducing lines of maize. Maize Genet Coop Newsl 73:53

    Google Scholar 

  • Char SN, Unger-Wallace E, Frame B et al (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol J 13:1002–1010

    CAS  PubMed  Google Scholar 

  • Chase SS (1969) Monoploids and monoploid-derivatives of maize (Zea mays L.). Bot Rev 35:117–168

    Google Scholar 

  • Chavan S, Smith SM (2014) A rapid and efficient method for assessing pathogenicity of Ustilago maydis on maize and teosinte lines. J Vis Exp 83:50712

    Google Scholar 

  • Chhabra R, Hossain F, Muthusamy V et al (2019a) Mapping and validation of Anthocyanin1 pigmentation gene for its effectiveness in early selection of shrunken2 gene governing kernel sweetness in maize. J Cereal Sci 87:258–265

    CAS  Google Scholar 

  • Chhabra R, Hossain F, Muthusamy V et al (2019b) Development and validation of breeder-friendly functional markers of sugary1 gene encoding starch-debranching enzyme affecting kernel sweetness in maize (Zea mays). Crop Pasture Sci 70:868–875

    CAS  Google Scholar 

  • Chhabra R, Hossain F, Muthusamy V et al (2020) Development and validation of gene-based markers for shrunken2-Reference allele and their utilization in marker-assisted sweet corn (Zea mays Sachharata) breeding programme. Plant Breed 139:1135–1144

    CAS  Google Scholar 

  • Chhabra R, Muthusamy V, Gain N et al (2021) Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and-wild-type maize inbreds. Mol Genet Genomics 23:1–18

    Google Scholar 

  • Chilcoat D, Liu Z-B, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci 149:27–46

    CAS  PubMed  Google Scholar 

  • Chuck GS, Brown PJ, Meeley R et al (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A 111:18775–18780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins N, Drake J, Ayliffe M et al (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367

    Google Scholar 

  • Crabb AR (1947) The hybrid-corn makers: prophets of plenty. Rutgers University Press, New Brunswick, NJ

    Google Scholar 

  • Creech RG (1965) Genetic control of carbohydrate synthesis in maize endosperm. Genetics 52:1175–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crow JF (1998) 90 years ago: the beginning of hybrid maize. Genetics 148:923–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das RR, Vinayan MT, Patel MB et al (2020) Genetic gains with rapid cycle genomic selection for combined drought and waterlogging tolerance in tropical maize (Zea mays L.). Plant Genome. https://doi.org/10.1002/tpg2.20035

  • Das AK, Gowda MM, Muthusamy V et al (2021) Development of maize hybrids with enhanced vitamin-E, vitamin-A, lysine and tryptophan through molecular breeding. Front Plant Sci 12:1427. https://doi.org/10.3389/fpls.2021.659381

    Article  Google Scholar 

  • Devi EL, Hossain F, Muthusamy V et al (2017) Microsatellite marker-based characterization of waxy maize inbreds for their utilization in hybrid breeding. 3 Biotech 7:1–9

    CAS  Google Scholar 

  • Dhami NB, Kim SK, Paudel A et al (2015) A review on threat of gray leaf spot disease of maize in Asia. J Maize Res Develop 1:71–85

    Google Scholar 

  • Dhawan NL (1964) Primitive maize in Sikkim. Maize Genet Coop Newsl 38:69–70

    Google Scholar 

  • Doebley J (1990) Molecular evidence and the evolution of maize. Econ Bot 44:6–27

    CAS  Google Scholar 

  • Doebley J (1992) Mapping the genes that made maize. Trends Genet 8:302–307

    CAS  PubMed  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    CAS  PubMed  Google Scholar 

  • Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    CAS  PubMed  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    CAS  PubMed  Google Scholar 

  • Dong X, Xu X, Miao J et al (2013) Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theor Appl Genet 126:1713–1720

    CAS  PubMed  Google Scholar 

  • Dong Z, Alexander M, Chuck G (2019) Understanding grass domestication through maize mutants. Trends Genet 35:118–128

    CAS  PubMed  Google Scholar 

  • Dorweiler J, Stec A, Kermicle J et al (1993) Teosinte glume architecture1: a genetic locus controlling a key step in maize evolution. Science 262:233–235

    CAS  PubMed  Google Scholar 

  • Du H, Huang M, Zhang Z et al (2014) Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response. Euphytica 198:115–126

    CAS  Google Scholar 

  • Dubreuil P, Charcosset A (1999) Relationships among maize inbred lines and populations from European and North-American origins are estimated using RFLP markers. Theor Appl Genet 99:473–480

    CAS  PubMed  Google Scholar 

  • Duo H, Hossain F, Muthusamy V et al (2021) Development of sub-tropically adapted diverse provitamin-A rich maize inbreds through marker-assisted pedigree selection, their characterization and utilization in hybrid breeding. PLoS One 16:e0245497. https://doi.org/10.1371/journal.pone.0245497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eubanks MW (1995) A cross between two maize relatives: Tripsacum dactyloides and Zea diploperennis. Econ Bot 49:172–182

    Google Scholar 

  • Evans MM (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762

    CAS  PubMed  Google Scholar 

  • Fan LJ, Qan LY, Leng XD et al (2008) Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize. Mol Breed 22:329–338

    CAS  Google Scholar 

  • FAOSTAT (2019). http://www.fao.org/faostat/en/#data/QCL/visualize

  • Farias-Rivera LA, Hernandez-Mendoza JL, Molina-Ochoa J et al (2003) Effect of leaf extracts of teosinte, Zea diploperennis l., and a mexican maize variety, criollo “uruapeno”, on the growth and survival of the fall armyworm (lepidoptera: noctuidae). Fla Entomol 86:239–243

    Google Scholar 

  • Feng ZL, Liu J, Fu FL et al (2008) Molecular mechanism of sweet and waxy in maize. Int J Plant Breed Genet 2:93–100

    CAS  Google Scholar 

  • Feng F, Wang Q, Liang C et al (2015) Enhancement of tocopherols in sweet corn by marker-assisted backcrossing of ZmVTE4. Euphytica 206:513–521

    CAS  Google Scholar 

  • Findley WR, Nault LR, Styer WE et al (1982) Inheritance of maize chlorotic dwarf virus resistance in maize × Zeadiploperennis backcrosses. Maize Newsl 56:165–166

    Google Scholar 

  • Fisher MB, Boyer CD (1983) Immunological characterization of maize starch branching enzymes. Plant Physiol 72:813–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald DK (1990) The business of breeding: hybrid corn in Illinois, 1890–1940. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Flint-Garcia SA (2013) Genetics and consequences of crop domestication. J Agric Food Chem 61:8267–8276

    CAS  PubMed  Google Scholar 

  • Frey TJ, Weldekidan T, Colbert T et al (2011) Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) GW Wils. using near-isogenic maize hybrids. Crop Sci 51:1551–1563

    Google Scholar 

  • Frey FP, Presterl T, Lecoq P et al (2016) First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations. Theor Appl Genet 129:945–961

    PubMed  PubMed Central  Google Scholar 

  • Frova C, Sari-Gorla M (1994) Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol Gen Genet 245:424–430

    CAS  PubMed  Google Scholar 

  • Funk CC, Brown ME (2009) Declining global per capita agricultural production and warming oceans threaten food security. Food Secur 1:271–289

    Google Scholar 

  • Gao J (2002) Nutritional evaluation and utilization of quality protein maize Zhong Dan 9409 in pig feed. In: FAO expert consultation and workshop on protein sources for the animal feed industry, Bangkok, Thailand

    Google Scholar 

  • Gao J, Wang S, Zhou Z et al (2019) Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. J Exp Bot 70:4849–4864

    CAS  PubMed  Google Scholar 

  • Gardner BL (2009) American agriculture in the twentieth century: how it flourished and what it cost. Harvard University Press, Cambridge, USA

    Google Scholar 

  • Garwood DL, McArdle FJ, Vanderslice SF et al (1976) Postharvest carbohydrate transformations and processed quality of high sugar maize genotypes. J Am Soc Hortic Sci 101:400–404

    CAS  Google Scholar 

  • Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops Food 8:1–12

    PubMed  PubMed Central  Google Scholar 

  • Gilles LM, Khaled A, Laffaire JB et al (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90:898–917

    CAS  PubMed  Google Scholar 

  • Global Nutrition Report (2016) From promise to impact: ending malnutrition by 2030. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Global Nutrition Report (2018) Shining a light to spur action on nutrition. Development Initiatives, Bristol, UK

    Google Scholar 

  • Global Nutrition Report (2020) Action on equity to end malnutrition. Development Initiatives, Bristol, UK

    Google Scholar 

  • Gong F, Wu X, Zhang H et al (2015) Making better maize plants for sustainable grain production in a changing climate. Front Plant Sci 6:835. https://doi.org/10.3389/fpls.2015.00835

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami R, Zunjare R, Khan S et al (2019) Marker-assisted introgression of rare allele of crtRB1 gene into elite quality protein maize inbred for combining high lysine, tryptophan and provitamin A in maize. Plant Breed 138:174–183

    CAS  Google Scholar 

  • Griliches Z (1957) Hybrid corn: an exploration in the economics of technological change. Econometrica 25:501–522

    Google Scholar 

  • Guo R, Dhliwayo T, Mageto EK et al (2020) Genomic prediction of kernel zinc concentration in multiple maize populations using genotyping-by-sequencing and repeat amplification sequencing markers. Front Plant Sci 11:534. https://doi.org/10.3389/fpls.2020.00534

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta HS, Babu R, Agrawal PK et al (2013) Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed 132:77–82

    CAS  Google Scholar 

  • Gupta HS, Hossain F, Muthusamy V (2015) Biofortification of maize: an Indian perspective. Indian J Genet Plant Breed 75:1–22

    Google Scholar 

  • Hachez C, Veselov D, Ye Q et al (2012) Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant Cell Environ 35:185–198

    CAS  PubMed  Google Scholar 

  • Hallauer A (2008) Corn breeding. In: Iowa State research farm progress reports, USA

    Google Scholar 

  • Hallauer AR, Eberhart SA (1970) Reciprocal full-sib selection. Crop Sci 10:315–316

    Google Scholar 

  • Hallauer AR, Miranda JB (1988) Maize breeding, 2nd edn. Iowa State Univ Press, Ames, IA

    Google Scholar 

  • Hao Y, Wang H, Yang X et al (2019) Genomic prediction using existing historical data contributing to selection in biparental populations: a study of kernel oil in maize. Plant Genome 12(1):25. https://doi.org/10.3835/plantgenome2018.05.0025

    Article  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes HK, Garber RJ (1919) Synthetic production of high-protein corn in relation to breeding. J Am Soc Agron 11:308

    Google Scholar 

  • He Z, Zhong J, Sun X et al (2018) The maize ABA receptors ZmPYL8, 9, and 12 facilitate plant drought resistance. Front Plant Sci 9:422. https://doi.org/10.3389/fpls.2018.00422

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedman KD, Boyer CD (1982) Gene dosage at the amylose-extender locus of maize: effects on the levels of starch branching enzymes. Biochem Genet 20:483–492

    CAS  PubMed  Google Scholar 

  • Holland JB, Marino TP, Manching HC et al (2020) Genomic prediction for resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci 60:1863–1875

    CAS  Google Scholar 

  • Hooda KS, Sekhar JC, Karjagi CG et al (2012) Identifying sources of multiple disease resistance in maize. Maize J 1:82–84

    Google Scholar 

  • Hooker AL, Perkins JM (1980) Helminthosporium leaf blights of corn—the state of the art. In: Proceedings of the annual corn and sorghum industry research conference-American seed trade association, corn and sorghum division, corn and sorghum research conference. Am Seed Trade Assoc, Chicago, IL, pp 68–87

    Google Scholar 

  • Hossain F, Prasanna BM, Sharma RK et al (2007) Evaluation of quality protein maize (QPM) genotypes for resistance to stored grain weevil, Sitophilus oryzae (Coleoptera: Curculionidae). Int J Trop Insect Sci 27:114–121

    Google Scholar 

  • Hossain F, Prasanna BM, Kumar R et al (2008a) The effect of genotype x pollination mode interaction on kernel modification in quality protein maize (QPM) genotypes. Indian J Genet Plant Breed 68:132–138

    Google Scholar 

  • Hossain F, Prasanna BM, Kumar R et al (2008b) Genetic analysis of kernel modification in quality protein maize (QPM) genotypes. Indian J Genet Plant Breed 68:1–9

    CAS  Google Scholar 

  • Hossain F, Nepolean T, Vishwakarma AK et al (2015) Mapping and validation of microsatellite markers linked to sugary1 and shrunken2 genes in maize (Zea mays L.). J Plant Biochem Biotechnol 24:135–142

    CAS  Google Scholar 

  • Hossain F, Muthusamy V, Bhat JS et al (2016) Maize: utilization of genetic resources in maize improvement. In: Broadening the genetic base of grain cereals. Springer Publication. https://doi.org/10.1007/978-81-322-3613-9_4

    Chapter  Google Scholar 

  • Hossain F, Muthusamy V, Zunjare RU et al (2017) Nutritional quality improvement in maize in India. In: Jat SL et al (eds) Maize research in India: retrospect and prospect. Springer, New York

    Google Scholar 

  • Hossain F, Muthusamy V, Pandey N et al (2018) Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J Genet 97:287–298

    CAS  PubMed  Google Scholar 

  • Hossain F, Muthusamy V, Zunjare RK et al (2019a) Biofortification of maize for protein quality and provitamin-A content. In: Jaiwal PK, Chhillar AK, Chaudhary D, Jaiwal R (eds) Nutritional quality improvement in plants. Springer, pp 115–136

    Google Scholar 

  • Hossain F, Chhabra R, Devi EL et al (2019b) Molecular analysis of mutant granule bound starch synthase-I (waxy1) gene in diverse waxy maize inbreds. 3 Biotech. https://doi.org/10.1007/s13205-018-1530-6

  • Hossain F, Sarika K, Muthusamy V et al (2019c) Quality protein maize for nutritional security. In: Qureshi AMI et al (eds) Quality breeding in field crops. Springer Books., Chapter-11, pp 217–237. https://doi.org/10.1007/978-3-030-04609-5_11

    Chapter  Google Scholar 

  • Hossain F, Rakshit S, Kumar B et al (2021) Molecular breeding for increasing nutrition quality in maize: recent progress. In: Henry R, Alam M, Seneweera S, Rakshit S, Hossain A (eds) Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield. CABI, UK, p 552

    Google Scholar 

  • Huang C, Sun H, Xu D et al (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci U S A 115:E334–E341

    CAS  PubMed  Google Scholar 

  • Hung HY, Shannon LM, Tian F et al (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109:E1913–E1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurni S, Scheuermann D, Krattinger SG et al (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci U S A 112:8780–8785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iltis HH (1983) From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–894

    CAS  PubMed  Google Scholar 

  • Inghelandt DV, Frey FP, Ries D et al (2019) QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Sci Rep 9:14418. https://doi.org/10.1038/s41598-019-50853-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israni B, Wouters FC, Luck K et al (2020) The fall armyworm Spodoptera frugiperda utilizes specific UDP-glycosyltransferases to inactivate maize defensive benzoxazinoids. Front Physiol. https://doi.org/10.3389/fphys.2020.604754

  • James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    CAS  PubMed  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase-activity encoded by the Hm1 disease resistance gene in maize. Science 258:985–987

    CAS  PubMed  Google Scholar 

  • Jompuk C, Jitlaka C, Jompuk P et al (2020) Combining three grain mutants for improved-quality sweet corn. Agric Environ Lett 5:e20010. https://doi.org/10.1002/ael2.20010

    Article  CAS  Google Scholar 

  • Jones D (1927) Double crossed Burr-Leaming seed corn. Connecticut Extension Bulletin, p 108

    Google Scholar 

  • Kaur S, Rakshit S, Choudhary M et al (2021) Meta-analysis of QTLs associated with popping traits in maize (Zea mays L.). PLoS One 16:e0256389. https://doi.org/10.1371/journal.pone.0256389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher T, Starr D, Richbourg L et al (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature. https://doi.org/10.1038/nature20827

  • Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424

    CAS  PubMed  Google Scholar 

  • Kermicle J (1973) Androgenesis and the indeterminate gametophyte mutation: source of the cytoplasm. Maize Genet Coop Newsl 47:207–208

    Google Scholar 

  • Kermicle JL (1994) Indeterminate gametophyte (ig)—biology and use. In: Freeling M, Walbot V (eds) The maize handbook. Springer-Verlag, New York

    Google Scholar 

  • Khanduri A, Hossain F, Lakhera PC et al (2011) Effect of harvest time on kernel sugar concentration in sweet corn. Indian J Genet Plant Breed 71:231–234

    Google Scholar 

  • Kiesselbach TA (1949) The structure and reproduction of corn. University of Nebraska–Lincoln, Lincoln, pp 1–96

    Google Scholar 

  • Klosgen RB, Gierl A, Schwarz-Sommer Z et al (1986) Molecular analysis of the waxy locus of Zea mays. Mol Genet Genomics 203:237–244

    Google Scholar 

  • Krzywdzinski AU (2016) Mapping and identifying candidate genes of the modifier of amylose extender 1 (mae1) mutation in maize (Zea mays L.). Ph.D. thesis. University of Guelph, Canada

    Google Scholar 

  • Kuki M, Pinto R, Bertagna F et al (2020) Association mapping and genomic prediction for ear rot disease caused by Fusarium verticillioides in a tropical maize germplasm. Crop Sci. https://doi.org/10.1002/csc2.20272

  • Kumar B, Karjagi CG, Jat SL et al (2011) Maize biology: an introduction. Directorate of Maize Research, Indian Council of Agricultural Research (ICAR)., Technical Bullettin, 2012/2, p 32

    Google Scholar 

  • Kurosawa RD, Vivas M, Amaral AT et al (2017) Popcorn germplasm resistance to fungal diseases caused by Exserohilum turcicum and Bipolaris maydis. Bragantia 77:36–47

    Google Scholar 

  • Landi P, Giuliani S, Salvi S et al (2010) Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J Exp Bot 61:3553–3562

    CAS  PubMed  Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A et al (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    CAS  Google Scholar 

  • Lertrat K, Pulam T (2007) Breeding for increased sweetness in sweet corn. Int J Plant Breed 1:27–30

    Google Scholar 

  • Li Y, Dong Y, Cui D et al (2007a) The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica 162:345–351

    Google Scholar 

  • Li YL, Dong YB, Niu SZ et al (2007b) QTL for popping characteristics in popcorn. Plant Breed 126:509–514

    Google Scholar 

  • Li L, Jiang H, Campbell M et al (2008) Characterization of maize amylose-extender (ae) mutant starches: part I. Relationship between resistant starch contents and molecular structures. Carbohydr Polym 74:396–404

    CAS  Google Scholar 

  • Li L, Li H, Li Q et al (2011) An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS One 6:e24699. https://doi.org/10.1371/journal.pone.0024699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang X, Xu S et al (2012) Genome-wide association studies identified three independent polymorphisms associated with a-tocopherol content in maize kernels. PLoS One 7:e36807. https://doi.org/10.1371/journal.pone.0036807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CH, Li YX, Shi YS et al (2015) Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One 10:e0121624. https://doi.org/10.1371/journal.pone.0121624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Sun B, Li Y et al (2016) Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics 17:1–11

    Google Scholar 

  • Li Y, Tong L, Deng L et al (2017) Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids. Theor Appl Genet 130:2587–2600

    PubMed  Google Scholar 

  • Li Z, Srivastava R, Tang J et al (2018) Cis-effects condition the induction of a major unfolded protein response factor, ZmbZIP60, in response to heat stress in maize. Front Plant Sci 9:833. https://doi.org/10.3389/fpls.2018.00833

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen K et al (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68

    CAS  PubMed  Google Scholar 

  • Liu S, Qin F (2021) Genetic dissection of maize drought tolerance for trait improvement. Mol Breed 41:1–3

    Google Scholar 

  • Liu Y, Dong Y, Niu S et al (2007a) QTL identification of kernel composition traits with popcorn using both F2:3 and BC2 F2 populations developed from the same cross. J Cereal Sci 48:625–631

    Google Scholar 

  • Liu J, Rong T, Li W (2007b) Mutation loci and intragenic selection marker of the granule-bound starch synthase gene in waxy maize. Mol Breed 20:93–102

    CAS  Google Scholar 

  • Liu F, Ahmed Z, Lee EA et al (2012) Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions. J Exp Bot 63:1167–1183

    CAS  PubMed  Google Scholar 

  • Liu L, Du Y, Shen X et al (2015a) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11:e1005670. https://doi.org/10.1371/journal.pgen.1005670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Jeffers D, Zhang Y et al (2015b) Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers. Mol Breed 35:1–2

    Google Scholar 

  • Liu Q, Liu H, Gong Y et al (2017a) An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant 10:483–497

    CAS  PubMed  Google Scholar 

  • Liu C, Li X, Meng D et al (2017b) A 4 bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10:520–522

    CAS  PubMed  Google Scholar 

  • Liu J, Fernie AR, Yan J (2020a) The past, present, and future of maize improvement: domestication, genomics, and functional genomic routes toward crop enhancement. Plant Commun 1:100010. https://doi.org/10.1016/j.xplc.2019.100010

    Article  PubMed  Google Scholar 

  • Liu S, Li C, Wang H et al (2020b) Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol 21:163. https://doi.org/10.1186/s13059-020-02069-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Hu G, Zhang A et al (2020c) Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J. https://doi.org/10.1016/j.cj.2020.08.008

  • Liu L, Gallagher J, Arevalo ED et al (2021) Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat Plants 7:287–294

    CAS  PubMed  Google Scholar 

  • Lobell DB, Banziger M, Magorokosho C et al (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Chang 1:42–45

    Google Scholar 

  • Longmei N, Gill GK, Zaidi PH et al (2021) Genome wide association mapping for heat tolerance in sub-tropical maize. BMC Genomics 22:154. https://doi.org/10.1186/s12864-021-07463-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonnquist JH (1961) Progress from recurrent selection procedures for the improvement of corn populations. Nebraska Agric Exp Stat Res Bull 197:1–34

    Google Scholar 

  • Lorain J (1814) Observations on Indian corn and potatoes. Phila Soc Prom Agric Mem 3:303–325

    Google Scholar 

  • Louette D, Smale M (2000) Farmers' seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113:25–41

    Google Scholar 

  • Louette D, Charrier A, Berthaud J (1997) In situ conservation of maize in Mexico: genetic diversity and maize seed management in a traditional community. Econ Bot 51:20–38

    Google Scholar 

  • Lu HJ, Bernardo R, Ohm H (2003) Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers. Theor Appl Genet 106:423–427

    CAS  PubMed  Google Scholar 

  • Lu Y, Zhang S, Shah T et al (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci U S A 107:19585–19590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mageto EK, Crossa J, Perez-Rodriguez P et al (2020) Genomic prediction with genotype by environment interaction analysis for kernel zinc concentration in tropical maize germplasm. G3 (Bethesda) 10:2629–2639

    CAS  PubMed  Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK et al (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886. https://doi.org/10.3389/fpls.2018.00886

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1938) The origin of maize. Proc Natl Acad Sci U S A 24:303–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Omori F (2007) Breeding for flooding tolerant maize using "teosinte" as a germplasm resource. Plant Root 1:17–21

    CAS  Google Scholar 

  • Mano Y, Muraki M, Fujimori M et al (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Google Scholar 

  • Mano Y, Omori F, Loaisiga CH et al (2009) QTL mapping of above-ground adventitious roots during flooding in maize × teosinte "Zea nicaraguensis" backcross population. Plant Root 3:3–9

    CAS  Google Scholar 

  • Mano Y, Muraki M, Takamizo T (2015) Identification of QTL controlling flooding tolerance in reducing soil conditions in maize (Zea mays L.) seedlings. Plant Prod Sci 9:176–181

    Google Scholar 

  • Mao H, Wang H, Liu S et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326. https://doi.org/10.1038/ncomms9326

    Article  CAS  PubMed  Google Scholar 

  • Martins LB, Rucker E, Thomason W et al (2019) Validation and characterization of maize multiple disease resistance QTL. G3-Genes Genomes Genet 9:2905–2912

    CAS  Google Scholar 

  • Marzec MA, Brąszewska-Zalewska A, Hensel G (2020) Prime editing: a new way for genome editing. Trends Cell Biol 30:257–259

    CAS  PubMed  Google Scholar 

  • Mason-Gamer RJ, Well CF, Kellogg EA (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol 15:1658–1673

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM et al (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta BK, Hossain F, Muthusamy V et al (2017) Analyzing the role of sowing and harvest time as factors for selecting super sweet (−sh2sh2) corn hybrids. Indian J Genet Plant Breed 77:348–356

    Google Scholar 

  • Mehta BK, Muthusamy V, Baveja A et al (2020a) Composition analysis of lysine, tryptophan and provitamin-A during different stages of kernel development in biofortified sweet corn. J Food Compos Anal 94:103625. https://doi.org/10.1016/j.jfca.2020.103625

    Article  CAS  Google Scholar 

  • Mehta BK, Muthusamy V, Zunjare RU et al (2020b) Biofortification of sweet corn hybrids for provitamin-A, lysine and tryptophan using molecular breeding. J Cereal Sci 96:103093. https://doi.org/10.1016/j.jcs.2020.103093

    Article  CAS  Google Scholar 

  • Mehta BK, Chhbra R, Muthusamy V et al (2021) Expression analysis of β-carotene hydroxylase1 and opaque2 genes governing accumulation of provitamin-A, lysine and tryptophan during kernel development in biofortified sweet corn. 3Biotech 11(7):325

    Google Scholar 

  • Meister R, Rajani MS, Ruzicka D et al (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19:779–788

    CAS  PubMed  Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Larnkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. CSSA Special Publication, pp 29–44

    Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihm JA (1985) Breeding for host plant resistance to maize stem-borers. Int. J. Trop. Insect Sci. 6:369–377

    Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N et al (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:e113583. https://doi.org/10.1371/journal.pone.0113583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N et al (2016) Genetic analyses of kernel carotenoids in novel maize genotypes possessing rare allele of β-carotene hydroxylase gene. Cereal Res Commun 44:669–680

    CAS  Google Scholar 

  • Na ZO, Li XJ, Lei WA et al (2018) Maize ABP2 enhances tolerance to drought and salt stress in transgenic Arabidopsis. J Integr Agric 17:2379–2393

    Google Scholar 

  • Nyaga C, Gowda M, Beyene Y et al (2019) Genome-wide analyses and prediction of resistance to MLN in large tropical maize germplasm. Genes (Basel). https://doi.org/10.3390/genes11010016

  • Osman KA, Tang B, Wang Y et al (2013) Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS One 8:e79305. https://doi.org/10.1371/journal.pone.0079305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott OO (2008) The search for novel resistance alleles: screening teosinte-maize introgression lines for resistance to northern leaf blight. Ph.D. thesis submitted to the College of Agriculture and Life Sciences. Cornell University, US, pp 1–26

    Google Scholar 

  • Ottaviano E, Gorla MS, Pe E et al (1991) Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize. Theor Appl Genet 81:713–719

    CAS  PubMed  Google Scholar 

  • Pal S, Zunjare RU, Muthusamy V et al (2020) Influence of T-, C- and S-cytoplasms on male sterility and their utilisation in baby corn hybrid breeding. Euphytica 216:1–10

    Google Scholar 

  • Panda AK, Prakash B, Rao SR et al (2013) Utilisation of high quality protein maize in poultry. Worlds Poult Sci J 69:877–888

    Google Scholar 

  • Pasztor K, Borsos O (1990) Inheritance and chemical composition in inbred maize (Zea mays L.) × teosinte (Zea mays subsp. mexicana (Schrader) Iltis) hybrids. Novenytermeles 39:193–213

    CAS  Google Scholar 

  • Prakash NR, Zunjare RU, Muthusamy V et al (2019) Genetic analysis of prolificacy in ‘Sikkim Primitive’—a prolific maize (Zea mays L.) landrace of North-Eastern Himalaya. Plant Breed 138:781–789

    CAS  Google Scholar 

  • Prakash NR, Chhabra R, Zunjare RU et al (2020) Molecular characterization of teosinte branched1 gene governing branching architecture in cultivated maize and wild relatives. 3 Biotech 10:1–15

    Google Scholar 

  • Prakash NR, Zunjare RU, Muthusamy V et al (2021) A novel quantitative trait loci governs prolificacy in ‘Sikkim Primitive’–A unique maize (Zea mays) landrace of North‐Eastern Himalaya. Plant Breed. https://doi.org/10.1111/pbr.12924

  • Prasanna BM (2010) Phenotypic and molecular diversity of maize landraces: characterization and utilization. Indian J Genet Plant Breed 70:315–327

    Google Scholar 

  • Prasanna BM (2012) Diversity in global maize germplasm: characterisation and utilisation. J Biosci 37:843–855

    CAS  PubMed  Google Scholar 

  • Prasanna BM, Sharma L (2005) The landraces of maize (Zea mays L.): diversity and utility. Indian J Plant Genet Resour 18:155–168

    Google Scholar 

  • Prasanna BM, Vasal SK, Kassahun B et al (2001) Quality protein maize. Curr Sci 81:1308–1319

    CAS  Google Scholar 

  • Prasanna BM, Pixley K, Warburton ML et al (2010) Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breed 26:339–356

    CAS  Google Scholar 

  • Prasanna BM, Chaikam V, Mahuku G (2012) Doubled haploid technology in maize breeding: an overview. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in Maize breeding: theory and practice. CIMMYT, Mexico, DF, pp 1–8

    Google Scholar 

  • Prasanna BM, Palacios-Rojas N, Hossain F et al (2020a) Molecular breeding for nutritionally enriched maize: status and prospects. Front Genet 10:1392. https://doi.org/10.3389/fgene.2019.01392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM, Suresh LM, Mwatuni F et al (2020b) Maize lethal necrosis (MLN): containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa. Virus Res 282:197943

    Google Scholar 

  • Prasanna BM, Nair SK, Babu R et al (2020c) Increasing genetic gains in maize in stress-prone environments of the tropics. In: Kole C (ed) Genomic designing of climate-smart cereal crops. Springer, Cham. https://doi.org/10.1007/978-3-319-93381-8_3

    Chapter  Google Scholar 

  • Prasanna BM, Cairns JE, Zaidi PH et al (2021) Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theor Appl Genet 134:1729–1752

    PubMed  PubMed Central  Google Scholar 

  • Prigge V, Sanchez C, Dhillon BS et al (2011) Doubled haploids in tropical maize: I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci 51:1498–1506

    Google Scholar 

  • Prigge V, Xu XW, Li L et al (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190:781–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prischmann DA, Dashiell KE, Schneider DJ et al (2009) Evaluating Tripsacum-introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae). J Appl Entomol 133:10–20

    Google Scholar 

  • Qi X, Wu H, Jiang H et al (2020) Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. Crop J 8:440–448

    Google Scholar 

  • Qian Y, Ren Q, Zhang J et al (2019) Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Gene 692:68–78

    CAS  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y et al (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    CAS  PubMed  Google Scholar 

  • Qiu F, Zheng Y, Zhang Z et al (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    PubMed  PubMed Central  Google Scholar 

  • Rahman H, Pekic S, Lazic-Jancic V et al (2011) Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genet Mol Res 10:889–901

    CAS  PubMed  Google Scholar 

  • Raihan MS, Liu J, Huang J et al (2016) Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population. Theor Appl Genet 129:1465–1477

    CAS  PubMed  Google Scholar 

  • Rajasekhar KV, Prakash B, Lakshmi KV et al (2020) Effect of feeding diet with alternate protein sources and quality protein maize on performance and nutrient utilization in broiler chickens. Tropl Anim Health Prod 52:2297–2302

    CAS  Google Scholar 

  • Ramirez DA (1997) Gene introgression in maize (Zea mays ssp mays L.). Philipp J Crop Sci 22:51–63

    Google Scholar 

  • Ren J, Wu P, Trampe B et al (2017) Novel technologies in doubled haploid line development. Plant Biotechnol J 15:1361–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    CAS  PubMed  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA et al (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    CAS  PubMed  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D et al (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Google Scholar 

  • Ricci GC, Silva N, Pagliarini MS et al (2007) Microsporogenesis in inbred line of popcorn (Zea mays L.). Genet Mol Res 6:1013–1018

    CAS  PubMed  Google Scholar 

  • Rober FK, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize. Performance of new inducers and significance of doubled haploid lines in hybrid breeding [Zea mays L.]. Maydica 50:275–283

    Google Scholar 

  • Rosengrant MG, Ringier C, Sulser TB et al (2009) Agriculture and food security under global change: prospects for 2025/2050. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Rotarenco VD, Georgeta DS, Fuia S (2010) New inducers of maternal haploids in maize. Maize Genet Coop Newsl 84:36–50

    Google Scholar 

  • Saengwilai P, Tian X, Lynch JP (2014) Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiol 166:581–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T et al (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    CAS  PubMed  Google Scholar 

  • Salvi S, Sponza G, Morgante M et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanguineti MC, Tuberosa R, Landi P et al (1999) QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J Exp Bot 50:1289–1297

    CAS  Google Scholar 

  • Santantonio N, Atanda SA, Beyene Y et al (2020) Strategies for effective use of genomic information in crop breeding programs serving Africa and South Asia. Front Plant Sci 11:353. https://doi.org/10.3389/fpls.2020.00353

    Article  PubMed  PubMed Central  Google Scholar 

  • Sari-Gorla M, Krajewski P, Di Fonzo N et al (1999) Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor Appl Genet 99:289–295

    Google Scholar 

  • Sarika K, Hossain F, Muthusamy V et al (2017) Exploration of novel opaque16 mutation as a source for high-lysine and-tryptophan in maize endosperm. Indian J Genet Plant Breed 77:59–64

    CAS  Google Scholar 

  • Sarika K, Hossain F, Muthusamy V et al (2018a) Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Sci 272:142–152

    CAS  PubMed  Google Scholar 

  • Sarika K, Hossain F, Muthusamy V (2018b) Opaque16, a high lysine and tryptophan mutant, does not influence the key physico-biochemical characteristics in maize kernel. PLoS One 13:e0190945. https://doi.org/10.1371/journal.pone.0190945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman MJ et al (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4:689–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Setter TL, Yan J, Warburton M et al (2011) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot 62:701–716

    CAS  PubMed  Google Scholar 

  • Sharma L, Prasanna BM, Ramesh B (2010) Phenotypic and microsatellite-based diversity and population genetic structure of maize landraces in India, especially from the North East Himalayan region. Genetica 138:619–631

    CAS  PubMed  Google Scholar 

  • Shi J, Gao H, Wang H et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain under field drought stress conditions. Plant Biotechnol J 15:2017–2216

    Google Scholar 

  • Shiferaw B, Prasanna B, Hellin J et al (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327

    Google Scholar 

  • Shukla VP, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zincfinger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breed Assoc Rep 4:296–301

    Google Scholar 

  • Singh J, Sharma S, Kaur A et al (2021) Marker-assisted pyramiding of lycopene-ε-cyclase, β-carotene hydroxylase1 and opaque2 genes for development of biofortified maize hybrids. Sci Rep 11:1–5

    Google Scholar 

  • Sitonik C, Suresh LM, Beyene Y et al (2019) Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theor Appl Genet 132:2381–2399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D et al (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  PubMed  Google Scholar 

  • Smykal P, Nelson MN, Berger JD et al (2018) The impact of genetic changes during crop domestication. Agronomy 8:119. https://doi.org/10.3390/agronomy8070119

    Article  Google Scholar 

  • Solomon KF, Martin I, Zeppa A (2012) Genetic effects and genetic relationships among shrunken2 (sh2) sweet corn lines and F1 hybrids. Euphytica 185:385–394

    Google Scholar 

  • Strable J, Wallace JG, Unger-Wallace E et al (2017) Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell 29:1622–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J et al (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturtevant EL (1899) Varieties of corn. Bulletin No. 57. USDA, Washington, DC

    Google Scholar 

  • Technow F, Burger A, Melchinger AE (2013) Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. G3 (Bethesda) 3:197–203

    PubMed  Google Scholar 

  • Teng F, Zhai L, Liu R et al (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73:405–416

    CAS  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    CAS  PubMed  Google Scholar 

  • Tian J, Wang C, Xia J et al (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658–664

    CAS  PubMed  Google Scholar 

  • Trachsel S, Sun D, SanVicente FM et al (2016) Identification of QTL for early vigor and stay-green conferring tolerance to drought in two connected advanced backcross populations in tropical maize (Zea mays L.). PLoS One 11:e0149636. https://doi.org/10.1371/journal.pone.0149636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi KK, Warrier R, Govila OP et al (2011) Biology of Zea mays (maize). A series of crop specific documents. Department of Biotechnology, Ministry of Science and Technology and Ministry of Environmental Sciences and Forests, pp 1–39

    Google Scholar 

  • Troyer AF (1999) Background of U.S. hybrid corn. Crop Sci 39:601

    Google Scholar 

  • Troyer AF (2003) Champaign county, Illinois, and the origin of hybrid corn. In: Janick J (ed) Plant breed rev. John Wiley & Sons, Inc, pp 41–60

    Google Scholar 

  • Troyer FA (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543

    Google Scholar 

  • UNICEF-WHO-WB (2021) Levels and trends in child malnutrition: key findings of the 2021 edition of the joint child malnutrition estimates. World Health Organization, Geneva

    Google Scholar 

  • Vignesh M, Nepolean T, Hossain F et al (2013) Sequence variation in 3′ UTR region of crtRB1 gene and its effect on β-carotene accumulation in maize kernel. J Plant Biochem Biotechnol 22:401–408

    CAS  Google Scholar 

  • Vineyard ML, Bear HP (1952) Amylose content. Maize Genet Coop Newsl 26:5

    Google Scholar 

  • Virk PS, Andersson MS, Arcos J et al (2021) Transition from targeted breeding to mainstreaming of biofortification traits in crop improvement programs. Front Plant Sci. https://doi.org/10.3389/fpls.2021.703990

  • Vivek BS, Krishna GK, Vengadessan V et al (2017) Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome. https://doi.org/10.3835/plantgenome2016.07.0070

  • Wang H, Nussbaum-Wagler T, Li B et al (2005) The origin of the naked grains of maize. Nature 436:714–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Studer AJ, Zhao Q et al (2015) Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1. Genetics 200:965–974

    PubMed  PubMed Central  Google Scholar 

  • Wang XL, Wang HW, Liu SX et al (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241

    CAS  PubMed  Google Scholar 

  • Wang L, Beissinger TM, Lorant A et al (2017a) The interplay of demography and selection during maize domestication and expansion. Genome Biol 18:1–13

    Google Scholar 

  • Wang C, Yang Q, Wang W et al (2017b) A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol 215:1503–1155

    CAS  PubMed  Google Scholar 

  • Wang J, Lin Z, Zhang X et al (2019) krn1, a major quantitative trait locus for kernel row number in maize. New Phytol 223:1634–1646

    CAS  PubMed  Google Scholar 

  • Wei WH, Zhao WP, Song YC et al (2003) Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays × Zea diploperennis. Hereditas 138:21–26

    PubMed  Google Scholar 

  • Wessler SR, Baran G, Varagona M et al (1986) Excision of Ds produces waxy protein with a range of enzymatic activities. EMBO J 5:2427–2432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wills DM, Whipple CJ, Takuno S et al (2013) From many, one: genetic control of prolificacy during maize domestication. PLoS Genet 9:e1003604. https://doi.org/10.1371/journal.pgen.1003604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Womack ED, Williams WP, Smith JS et al (2020) Mapping quantitative trait loci for resistance to fall armyworm (Lepidoptera: Noctuidae) leaf-feeding damage in maize inbred Mp705. J Econ Entomol 113:956–963

    CAS  PubMed  Google Scholar 

  • Xing Y, Ingvardsen C, Salomon R et al (2006) Analysis of sugarcane mosaic virus resistance in maize in an isogenic dihybrid crossing scheme and implications for breeding potyvirus-resistant maize hybrids. Genome 49:1274–1282

    CAS  PubMed  Google Scholar 

  • Xing A, Gao Y, Ye L et al (2015) A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot 66:3791–3802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav OP, Hossain F, Karjagi CG et al (2015) Genetic improvement of maize in India: retrospect and prospects. Agric Res 4:325–338

    CAS  Google Scholar 

  • Yallou CG, Menkir A, Adetimirin VO et al (2009) Combining ability of maize inbred lines containing genes from Zea diploperennis for resistance to Striga hermonthica (Del.) Benth. Plant Breed 128:143–148

    Google Scholar 

  • Yan JB, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327

    CAS  PubMed  Google Scholar 

  • Yang Q, Xu M (2013) Qualitative and quantitative trait polymorphisms in maize. In: Diagnostics in plant breeding. Springer, Dordrecht, pp 405–442

    Google Scholar 

  • Yang WP, Zheng YL, Zheng WT et al (2005) Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Mol Breed 15:257–269

    Google Scholar 

  • Yang Q, Li Z, Li W et al (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci 110:16969–16974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, He Y, Kabahuma M et al (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49:1364–1372

    CAS  PubMed  Google Scholar 

  • Ye J, Zhong T, Zhang D et al (2019) The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant 12:360–373

    CAS  PubMed  Google Scholar 

  • Yongbin D, Zang Z, Shi Q et al (2012) Quantitative trait loci mapping and meta-analysis across three generations for popping characteristics in popcorn. J Cereal Sci 56:581–586

    CAS  Google Scholar 

  • York LM, Galindo-Castaneda T, Schussler JR et al (2015) Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot 66:2347–2358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    CAS  PubMed  Google Scholar 

  • Yu F, Liang K, Han X et al (2019) Major natural genetic variation contributes to waterlogging tolerance in maize seedlings. Mol Breed 39:1–13

    CAS  Google Scholar 

  • Yu F, Tan Z, Fang T et al (2020) A comprehensive transcriptomics analysis reveals long non-coding RNA to be involved in the key metabolic pathway in response to waterlogging stress in maize. Genes 11:267. https://doi.org/10.3390/genes11030267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi PH, Rashid Z, Vinayan MT et al (2015) QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS One 10:e0124350. https://doi.org/10.1371/journal.pone.0124350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan A, Lynch JP (2015) Reduced frequency of lateral root branching improves N capture from low-N soils in maize. J Exp Bot 66:2055–2065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan W, Liu J, Pan Q et al (2019) An allele of ZmPORB2 encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize. Plant J 100:114–127

    CAS  PubMed  Google Scholar 

  • Zhang W, Yang W, Wang M et al (2013) Increasing lysine content of waxy maize through introgression of opaque-2 and opaque-16 genes using molecular assisted and biochemical development. PLoS One 8:e56227. https://doi.org/10.1371/journal.pone.0056227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Ku LX, Han ZP et al (2014) The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). J Exp Bot 65:5063–5076

    CAS  PubMed  Google Scholar 

  • Zhang A, Wang H, Beyene Y et al (2017) Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. Front Plant Sci 8:1916. https://doi.org/10.3389/fpls.2017.01916

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Mi Y, Mao H et al (2019) Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol J 18:1271–1283

    PubMed  PubMed Central  Google Scholar 

  • Zhao X, Tan G, Xing Y et al (2012) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breed 30:1077–1088

    Google Scholar 

  • Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    CAS  PubMed  Google Scholar 

  • Zheng H, Wang H, Yang H et al (2013) Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS One 8:1–11

    CAS  Google Scholar 

  • Zhong Y, Liu C, Qi X et al (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5:575–580

    PubMed  Google Scholar 

  • Zunjare R, Hossain F, Thirunavukkarasu N et al (2014) Evaluation of specialty corn inbreds for responses to stored grain weevil (Sitophilus oryzae L.) infestation. Indian J Genet Plant Breed 74:564–567

    Google Scholar 

  • Zunjare RU, Hossain F, Muthusamy V et al (2015a) Analyses of genetic diversity among exotic-and indigenous-maize inbreds differing for responses to stored grain weevil (Sitophilus oryzae L) infestation. Maydica 60:1–7

    Google Scholar 

  • Zunjare R, Hossain F, Muthusamy V et al (2015b) Genetics of resistance to stored grain weevil (Sitophilus oryzae L.) in maize. Cogent Food Agric 1:1075934. https://doi.org/10.1080/23311932.2015.1075934

    Article  CAS  Google Scholar 

  • Zunjare R, Hossain F, Muthusamy V et al (2015c) Popping quality attributes of popcorn hybrids in relation to weevil (Sitophilus oryzae) infestation. Indian J Genet 75:510–513

    CAS  Google Scholar 

  • Zunjare R, Hossain F, Muthusamy V et al (2016) Genetic variability among exotic and indigenous maize inbreds for resistance to stored grain weevil (Sitophilus oryzae L.) infestation. Cogent Food Agric 2:1137156

    Google Scholar 

  • Zunjare RU, Hossain F, Muthusamy V et al (2017) Influence of rare alleles of β-carotene hydroxylase and lycopene epsilon cyclase genes on accumulation of provitamin A carotenoids in maize kernels. Plant Breed 136:872–880

    CAS  Google Scholar 

  • Zunjare RU, Hossain F, Muthusamy V et al (2018a) Development of biofortified maize hybrids through marker-assisted stacking of β-Carotene Hydroxylase, Lycopene-ε-Cyclase and Opaque2 genes. Front Plant Sci 9:178. https://doi.org/10.3389/fpls.2018.00178

    Article  PubMed  PubMed Central  Google Scholar 

  • Zunjare RU, Chhabra R, Hossain F et al (2018b) Molecular characterization of 5′ UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification. 3Biotech 8:75

    Google Scholar 

  • Zunjare RU, Chhabra R, Hossain F et al (2018c) Development and validation of multiplex-PCR assay for simultaneous detection of rare alleles of crtRB1 and lcyE governing higher accumulation of provitamin A in maize kernel. J Plant Biochem Biotechnol 27:208–214

    CAS  Google Scholar 

  • Zuo W, Chao Q, Zhang N et al (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157

    CAS  PubMed  Google Scholar 

  • Zurek PR, Topp CN, Benfey PN (2015) Quantitative trait locus mapping reveals regions of the maize genome controlling root system architecture. Plant Physiol 167:1487–1496

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, F. et al. (2022). Maize Breeding. In: Yadava, D.K., Dikshit, H.K., Mishra, G.P., Tripathi, S. (eds) Fundamentals of Field Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-16-9257-4_4

Download citation

Publish with us

Policies and ethics