Skip to main content

Groundnut Breeding

  • Chapter
  • First Online:
Fundamentals of Field Crop Breeding
  • 1541 Accesses

Abstract

Considerable progress has been made in groundnut breeding programmes where 233 varieties were released from the past 25 years. The chapter will throw insights on the heritability, gene action of different traits and their improvement using conventional and modern non-conventional approaches with an aim to reach the ultimate goal of farmers or breeders, i.e. yield. Approaches to overcome problems encountered in resistance breeding are discussed, with particular reference to foliar fungal diseases, aflatoxins, viruses, bacterial wilt, insects, drought, heat, etc. Progress in breeding for confectionery groundnut and biofortification and adaptation is also considered. Different techniques were highlighted such as interspecific hybridization and genetic engineering to transfer useful genes from wild Arachis species and other sources into A. hypogaea lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou YAM, Gregory WC, Cooper WE (1974) Sources and nature of resistance to Cercospora arachidicola Hori and Cercosporium personatum (Beck and Curtis) Deighton in Arachis species. Peanut Sci 1:6–11

    Google Scholar 

  • Agarwal G, Clevenger J, Pandey MK et al (2018) High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J 16(11):1954–1967. https://doi.org/10.1111/pbi.12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Nawade B, Bosamia TC et al (2020) Identification of novel QTLs for late leaf spot resistance and validation of a major rust QTL in peanut (Arachis hypogaea L.). 3 Biotech 10:458. https://doi.org/10.1007/s13205-020-02446-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Akgul DS, Ozgonen H, Erkilic A (2011) The effects of seed treatments with fungicides on stem rot caused by Sclerotium rolfsii sacc., in peanut. Pak J Bot 43(6):2991–2996

    CAS  Google Scholar 

  • Aman V, Mahatma MK, Singh AL et al (2020) P4N: peanut for nutrition. ICAR-Directorate of Groundnut Research, Junagadh, Technical Bulletin, pp 1–26

    Google Scholar 

  • Anderson WF, Holbrook CC, Timper P (2006) Registration of root-knot nematode resistant peanut germplasm lines NR 0812 and NR 0817. Crop Sci 46:481–482

    Google Scholar 

  • Anonymous (2019) Annual report. ICAR-ICAR-DGR, Junagadh, p 15

    Google Scholar 

  • Aruna R, Nigam SN, Waliyar F (2005) Current status of foliar diseases resistance breeding in groundnut at ICRISAT Center, India. In: International Peanut Conference, Kasetsart University, Bangkok, Thailand

    Google Scholar 

  • Arunyanark A, Jogloy S, Akkasaeng C et al (2008) Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci 194:113–125

    CAS  Google Scholar 

  • Arunyanark A, Jogloy S, Vorasoot N et al (2009) Stability of relationship between chlorophyll density and soil plant analysis development chlorophyll meter readings in peanut across different drought stress conditions. Asian J Plant Sci 8(2):102

    CAS  Google Scholar 

  • Babu CN (1955) Cytogenetical investigation on groundnut I. The somatic chromosome. Indian J Agric Sci 25:41–46

    Google Scholar 

  • Bala M, Radhakrishnan T, Kumar A et al (2016) Over-expression of a fusion gene of radish and fenugreek defensins improves the resistance to leaf spot diseases caused by Cercospora arachidicola and Phaeoisariopsis personata in transgenic peanut. Turk J Biol 40:139–149. https://doi.org/10.3906/biy-1412-46

    Article  CAS  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    CAS  Google Scholar 

  • Baltensperger DD, Prine GM, Dunn RA (1986) Root-knot nematode resistance in Arachis glabrata. Peanut Sci 13:78–80

    Google Scholar 

  • Basu MS (2003) Stress management in groundnut. In: Havir S, Hegde DM (eds) Souvenir. National seminar on stress management in oilseeds for attaining self-reliance in vegetable oils. ISOR, Hyderabad, pp 1–6

    Google Scholar 

  • Basu MS, Manivel MRK (2003) Groundnut research in India, NRCG evaluation of trait-based and empirical selections for drought resistance at the National Research Centre for Groundnut, Junagadh, Gujarat, India

    Google Scholar 

  • Basu MS, Nagraj G, Reddy PS (1988) Genetics of oil and other major components in groundnut (Arachis hypogaea L.). Int J Trop Agric 6(1-2):106–110

    Google Scholar 

  • Basu MS, Rathnakumar AL, Chuni L (2002) Improved groundnut varieties of India. All India Co-ordinated Research Project on Groundnut. National Research Centre for Groundnut, Junagadh

    Google Scholar 

  • Bentham G (1841) On the structure and affinities of Arachis and Voandzeia. Trans Linn Soc Lond 18:155–162

    Google Scholar 

  • Bera SK, Paria P, Radhakrishnan T (2002) Aneuploids in groundnut. Int Arachis Newslett 22:12

    Google Scholar 

  • Bera SK, Kumar V, Sunkad G et al (2011a) NRCGCS 77 (IC0582472; INGR10029), groundnut (Arachis hypogaea) germplasm, a source of resistance to PBND (peanut bud necrosis disease), stem rot, late leaf spot, early leaf spot, rust and Alternaria leaf blight. Indian J Plant Genet Resour 24(1):110

    Google Scholar 

  • Bera SK, Kumar V, Sunkad G et al (2011b) NRCGCS 85 (IC0582473; INGR10030), groundnut (Arachis hypogaea) germplasm, a source of resistance to PBND (peanut bud necrosis disease), stem rot, late leaf spot, early leaf spot, rust and Alternaria leaf blight. Indian J Plant Genet Resour 24(1):110

    Google Scholar 

  • Bera SK, Kumar V, Sunkad G et al (2011c) NRCGCS 86 (IC0582474; INGR10031), groundnut (Arachis hypogaea) germplasm, a source of resistance to PBND (peanut bud necrosis disease), stem rot, late leaf spot, early leaf spot, rust and Alternaria leaf blight. Indian J Plant Genet Resour 24(1):111

    Google Scholar 

  • Bera SK, Kumar V, Sunkad G et al (2011d) NRCGCS 21 (IC0583387; INGR10036), groundnut (Arachis hypogaea) germplasm, a source of resistance to PBND (peanut bud necrosis disease), stem rot, tolerant to late leaf spot, early leaf spot. Indian J Plant Genet Resour 24(1):112

    Google Scholar 

  • Bera SK, Kumar V, Sunkad G et al (2011e) NRCGCS 83 (IC0583388; INGR10037), groundnut (Arachis hypogaea) germplasm, a source of resistance to PBND (peanut bud necrosis disease), stem rot, tolerant to late leaf spot, Alternaria leaf blight. Indian J Plant Genet Resour 24(1):112

    Google Scholar 

  • Bera SK, Kumar V, Sunkad G et al (2011f) NRCGCS 124 (IC0583389; INGR10038), groundnut (Arachis hypogaea) germplasm, a source of resistance to PBND (peanut bud necrosis diseases), stem rot, tolerant to late leaf spot, Alternaria leaf blight. Indian J Plant Genet Resour 24(1):113

    Google Scholar 

  • Bera SK, Kumar V, Sunkad G et al (2011g) NRCGCS 180 (IC0583390; INGR10039), groundnut (Arachis hypogaea) germplasm, a source of resistance to PBND (peanut bud necrosis diseases), stem rot, tolerant to late leaf spot, Alternaria leaf blight. Indian J Plant Genet Resour 24(1):113

    Google Scholar 

  • Bera SK, Kumar V, Sunkad G et al (2011h) NRCGCS 222 (IC0583391; INGR10040), groundnut (Arachis hypogaea) germplasm, a source resistance to PBND (peanut bud necrosis diseases), stem rot, tolerant to late leaf spot, early leaf spot and Alternaria leaf blight. Indian J Plant Genet Resour 24(1):114

    Google Scholar 

  • Bera SK, Kasundra SV, Kamdar JH et al (2014) Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electron J Plant Breed 5:22–29

    Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV et al (2016) A novel QTL governing resistance to stem rot disease caused by Sclerotium rolfsii in peanut. Australas Plant Pathol 45(6):637–644. https://doi.org/10.1007/s13313-016-0448-x

    Article  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger et al (2019) The genome sequence of groundnut (Arachis hypogaea), a segmental allotetraploid. Nat Genet 51:877–884

    CAS  PubMed  Google Scholar 

  • Bhalani H, Mishra GP, Sarkar T et al (2019) Regulation of antioxidant mechanisms by AtDREB1A improves soil-moisture deficit stress tolerance in transgenic peanut (Arachis hypogaea L.). PLoS One 14(5):e0216706

    PubMed  PubMed Central  Google Scholar 

  • Bhauso TD, Radhakrishnan T, Kumar A et al (2014) Over-expression of bacterial mtlD gene confers enhanced tolerance to salt-stress and water-deficit stress in transgenic peanut (Arachishypogaea) through accumulation of mannitol. Aust J Crop Sci 8(3):413–421

    CAS  Google Scholar 

  • Birthal PS, Rao PP, Nigam SN et al (2010) Groundnut and soybean economies in Asia: facts, trends and outlook. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Boote KJ, Ibrahim AMH, Lafitte R et al (2011) Position statement on crop adaptation to climate change. Crop Sci 51:2337–2343

    Google Scholar 

  • Bosamia TC, Mishra GP, Radhakrishnan T et al (2015) Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS One 10(6):e0129127. https://doi.org/10.1371/journal.pone.0129127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosamia TC, Dodia SM, Mishra GP et al (2020) Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS One 15(8):e0236823. https://doi.org/10.1371/journal.pone.0236823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    PubMed  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Suppl. 1):S31–S40

    PubMed  Google Scholar 

  • Bovi MLA (1982) Genotypic and environmental effects on fatty acid composition, iodine value and oil content of peanut (Arachis hypogaea L.) PhD dissertation, University of Florida

    Google Scholar 

  • Braddock JC, Sims CA, O’Keefe SK (1995) Flavor and oxidative stability in roasted high oleic peanuts. J Food Sci 60:489–493

    CAS  Google Scholar 

  • Brown HD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Burow MD, Starr JL, Park CH et al (2014) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.). Mol Breed 34(2):393–406

    CAS  Google Scholar 

  • Chari KM, Gupta K, Prasad TG et al (1986) Enhancement of water stress by calcium treatment in groundnut and cowpea plants subjected to moisture stress. Plant Soil 91:109–114

    CAS  Google Scholar 

  • Chavarro C, Chu Y, Holbrook C et al (2020) Pod and seed trait QTL identification to assist breeding for peanut market preferences. G3 10(7):2297–2315. https://doi.org/10.1534/g3.120.401147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Wang ML, Barkley NA et al (2010) A simple allele-specific PCR-assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Report 28:542–548

    CAS  Google Scholar 

  • Chen X, Lu Q, Liu H et al (2019) Sequencing of cultivated groundnut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12(7):920–934

    CAS  PubMed  Google Scholar 

  • Choi K, Burow MD, Church G et al (1999) Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm. J Nematol 31:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Holbrook C, Timper P et al (2007) Development of a PCR based molecular marker to select for nematode resistance in peanut. Crop Sci 47:841–845

    CAS  Google Scholar 

  • Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B controls the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036

    CAS  Google Scholar 

  • Chu Y, Wu C, Holbrook C et al (2011) Marker assisted selection to pyramid nematode resistance and high oleic trait in peanut. Plant Genome 4:110–117

    CAS  Google Scholar 

  • Church GT, Simpson CE, Burow MD et al (2000) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol 8:55

    Google Scholar 

  • Craufurd PQ, Prasad PVV, Summerfield RJ (2002) Dry matter production and rate of change of harvest index at high temperature in peanut. Crop Sci 42:146–151

    PubMed  Google Scholar 

  • Craufurd PQ, Prasad PVV, Kakani VG et al (2003) Heat tolerance in groundnut. Field Crop Res 80:63–77

    Google Scholar 

  • D’Cruz R, Tanskasale MP (1961) Spontaneous alloployploidy in Arachis. Indian Oilseeds J 5:15–16

    Google Scholar 

  • Dey R, Pal KK, Chauhan SM et al (2001) Cellulolytic and groundnut shell decomposition potential of some microorganisms. Indian J Microbiol 42:165–167

    Google Scholar 

  • Dinh HT, Kaewpradit W, Jogloy S et al (2014) Nutrient uptake of peanut genotypes with different levels of drought tolerance under midseason drought. Turk J Agric For 38:495–505

    Google Scholar 

  • Divya Rani V, Sudini H, Reddy PN et al (2018) Resistance screening of groundnut advanced breeding lines against collar rot and stem rot pathogens. Int J Pure Appl Biosci 6(1):467–474

    Google Scholar 

  • Dodia SM, Mishra GP, Radhakrishnan T et al (2014) Identification of Aspergillus flavus isolates for developing biocontrol agent based on the gene-defects in the aflatoxin biosynthesis gene-cluster and flanking-regions. J Pure Appl Microbiol 8(6):4623–4635

    Google Scholar 

  • Dodia SM, Rathnakumar AL, Mishra GP et al (2016) Phenotyping and molecular marker analysis for stem-rot disease resistance using phenotyping and molecular marker analysis for stem-rot disease resistance using F2 mapping population in groundnut. Int J Trop Agric 34(4):1135–1139

    Google Scholar 

  • Dodia SM, Joshi B, Gangurde SG et al (2019) Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Theor Appl Genet 132(4):1001–1016. https://doi.org/10.1007/s00122-018-3255-7

    Article  PubMed  Google Scholar 

  • Dwivedi SL, Nigam SN (1995) Breeding for improved seed quality in groundnut (Arachis hypogaea L.) with special reference to export promotion: issues and opportunities. In: Paper presented at workshop on status of confectionery groundnut research in India and strategies for export promotion 28–29 April 1995. BARC, Trombay

    Google Scholar 

  • Dwivedi SL, Reddy DVR, Nigam SN et al (1993) Registration of ICGV 86031 peanut germplasm. Crop Sci 33:220

    Google Scholar 

  • Dwivedi SL, Nigam SN, Reddy DVR et al (1995) Progress in breeding groundnut varieties resistant to peanut bud necrosis virus and its vector. In: Buiei AAM et al (eds) Recent studies on peanut bud necrosis disease: proceedings of a meeting. 20 March 1995. ICRlSAT Asia Center, Patancheru, pp 35–40

    Google Scholar 

  • Dwivedi SL, Nigam SN, Rao YLC et al (1996) Registration of ‘ICGV 86325’ peanut. Crop Sci 36:806

    Google Scholar 

  • Dwivedi SL, Crouch JH, Nigam SN et al (2003) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Adv Agron 80:153–221

    CAS  Google Scholar 

  • Elkan GH (1995) Biological nitrogen fixation in peanuts. In: Pattee HE, Stalker HT (eds) Advances in peanut science. American Peanut Research and Education Society, Stillwater, pp 286–300

    Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in crop production. Adv Agron 77:189–272

    Google Scholar 

  • FAOSTAT (2011) http://faostat.fao.org/default.aspx

  • Faye I, Pandey MK, Hamidou F et al (2015) Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis hypogaea L.) under different water regimes in Niger and Senegal. Euphytica 206(3):631–647. https://doi.org/10.1007/s10681-015-1472-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez A, Krapovikas A (1994) Chromosome Y evolucionen Arachis, (Leguminosae). Bonplandia 8:187–220

    Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R et al (2012) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26

    PubMed  PubMed Central  Google Scholar 

  • Fry WE (1982) Principles of plant disease management. Academic, New York, p 378

    Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    CAS  PubMed  Google Scholar 

  • Gajjar KN, Mishra GP, Radhakrishnan T et al (2014) Validation of SSR markers linked to the rust and late leaf spot diseases resistance in diverse peanut genotypes. Aust J Crop Sci 8(6):927–936

    Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E et al (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39(5):836–845. https://doi.org/10.1139/g96-106

    Article  CAS  PubMed  Google Scholar 

  • Ghanbari A, Siahsar B, Tovassoli A et al (2011) Effect of uniconazole and cycocel on growth, yield and nutrient uptake of pearl millet under drought stress condition. Am Eurasian J Agric Environ Sci 10:857–862

    Google Scholar 

  • Ghewande MP, Desai S, Narayan P et al (1992) Some sources of resistance to early leaf spot of groundnut (Arachis hypogaea L.) in India. Trop Agric 69:284–286

    Google Scholar 

  • Ghewande MP, Desai S, Basu MS (2002) Diagnosis and management of major diseases of groundnut. National Research Centre for Groundnut, Junagadh, NRCG Bulletin, p 36

    Google Scholar 

  • Ghimpu V (1930) Recherchescytologiques sur Les genes: Hordeum, Acacia. Madicago. Vitis et Quercus. Arch d’Anat Microsc 26:136–234

    Google Scholar 

  • Ghorpade SA, Ghule SL, Thakur SG (1998) Relative susceptibility of some groundnut cultivars to pod borer, Caryedon serratus Olivier in storage. Seed Res 26:174–177

    Google Scholar 

  • Gowda MVC, Motagi BN, Naidu GK et al (2002) GPBD4: a Spanish bunch groundnut genotype resistant to rust and late leaf spot. Int Arachis Newslett 22:29–32

    Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Google Scholar 

  • Gregory WC (1946) Peanut breeding programme underway. In: Res. and farming, 69th annual report of NC agril. expt station, pp 42–44

    Google Scholar 

  • Gregory WC, Gregory MP, Krapovickas A et al (1973) Structure and genetic resources of peanuts. In: Peanuts—culture and uses. American Peanut Research and Education Association, Stillwater, OK, pp 47–133

    Google Scholar 

  • Gregory WC, Krapovikas A, Gregory MP (1980) Structure, variation, evolution and classification in Arachis. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Garden, Kew, pp 469–481

    Google Scholar 

  • Gunes A, Cicel N, Inal A et al (2006) Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre- and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ 52:368–376

    CAS  Google Scholar 

  • Guok HP, Wynne JC, Stalker HT (1986) Recurrent selection within a population from an interspecific peanut cross. Crop Sci 26:249–253

    Google Scholar 

  • Gururaj S, Kenchanagoudar PV, Naragund VB (2002) Identification of sources for field resistance to peanut bud necrosis disease in groundnut. Karnataka J Agri Sci 15:646–648

    Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. Phytopathology 29:65–87

    CAS  Google Scholar 

  • Halward TM, Stalker HT, Larue EA et al (1991a) The use of single primer DNA amplifications in genetic studies of peanut. In: Abstracts of symposium on plant breeding in the 1990’s. Research report. NC University, Durham, NC, p 54

    Google Scholar 

  • Halward TM, Wynne JC, Stalker HT (1991b) Recurrent selection progress in a population derived from an interspecific peanut cross. Euphytica 52:9–84

    Google Scholar 

  • Harlton CE, Uvesque CA, Punja ZK (1995) Genetic diversity in Sclerotium (Athelia) rolfsii and related species. Phytopathology 85:1269–1281

    Google Scholar 

  • Holbrook CC, Noe JP (1990) Resistance to Meloidogyne arenaria in Arachis spp. and the implications on development of resistant peanut cultivars. Peanut Sci 17:35–38

    Google Scholar 

  • Holbrook CC, Timper P, Culbreath AK et al (2008) Registration of ‘tifguard’ peanut. J Plant Regist 2:92–94

    Google Scholar 

  • Holbrook CC, Ozias-Akins P, Chu Y et al (2017) Registration of ‘TifNV-High O/L’ peanut. J Plant Regist 11:228–230. https://doi.org/10.3198/jpr2016.10.0059crc

    Article  Google Scholar 

  • Htoon W, Jogloy S, Vorasoot N et al (2014) Nutrient uptakes and their contributions to yield in peanut genotypes with different levels of terminal drought resistance. Turk J Agric For 38:781–791

    CAS  Google Scholar 

  • Hu XH, Zhang SZ, Miao HR et al (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8:5479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, He H, Chen W et al (2015) Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 128:1103–1115

    PubMed  PubMed Central  Google Scholar 

  • Husted L (1931) Chromosome numbers in species of peanut Arachis. Am Nat 65:476–477

    Google Scholar 

  • Husted L (1933) Cytological studies of the peanut Arachis. I Chromosome number and morphology. Cytologia 5:109–117

    Google Scholar 

  • Husted L (1936) Kayrological studies of the peanut Arachis. II. Chromosome number, morphology and behaviour and their application to the origin of cultivated forms. Cytologia 7:396–423

    Google Scholar 

  • IARC (1987) Aflatoxins. In: Overall evaluations of carcinogenicity. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans, suppl. 7. International Agency for Research on Cancer, Lyon, pp 83–87

    Google Scholar 

  • IBPGR (1990) Preliminary descriptors for Arachis. IBPGR, Rome

    Google Scholar 

  • IBPGR/ICRISAT (1992) Descriptors for groundnut. IBPGR, ICRISAT, Rome, pp 1–125

    Google Scholar 

  • Intorzato R, Tella R (1960) Sistema radicular do amendoim. Bragantia 19:119–123

    Google Scholar 

  • Isleib TG, Wynne JC, Nigam SN (1994) Groundnut breeding. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman & Hall, London, pp 552–623

    Google Scholar 

  • Janila P, Nigam SN, Pandey MK et al (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23. https://doi.org/10.3389/fpls.2013.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janila P, Nigam SN, Abhishek R et al (2014) Iron and zinc concentrations in peanut (Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters. J Agric Sci 153:975–994

    Google Scholar 

  • Janila P, Variath MT, Pandey MK et al (2016a) Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci 7:289. https://doi.org/10.3389/fpls.2016.00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y et al (2016b) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213. https://doi.org/10.1016/j.plantsci.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  • Jogloy S, Patanothai A, Toomsan S et al (1996) Breeding peanut to fit into Thai cropping systems. In: Proceedings of the peanut collaborative research support program-international research symposium and workshop, Two Jima Quality Inn, Arlington, Virginia, USA, 25-31 March, 1996, pp 353–362

    Google Scholar 

  • Kale DM, Mouli C (1984) Hybridization technique in groundnut. Indian J Genet Plant Breed 44(3):379–384

    Google Scholar 

  • Kalyani G, Reddy AS, Kumar PL et al (2007) Sources of resistance to tobacco streak virus in wild Arachis (Fabaceae: Papilionoidae) germplasm. Plant Dis 91:1585–1590

    CAS  PubMed  Google Scholar 

  • Kawakami J (1930) Chromosome numbers in Leguminosae. Bot Mag (Tokyo) 44:319–328

    Google Scholar 

  • Khan MR, Jain RK, Singh RV et al (2010) Economically important plant parasitic nematodes distribution. Atlas, Directorate of Information and Publications of Agriculture, Krishi Anusandhan Bhavan, Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Khedikar YP, Gowda MVC, Sarvamangala C et al (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knauft DA, Wynne JC (1995) Peanut breeding and genetics. Adv Agron 55:393–445

    Google Scholar 

  • Kochert GT, Halward T, Branch WD et al (1991) RFLP variability in peanut cultivars and wild species. Theor Appl Genet 81:565–570

    CAS  PubMed  Google Scholar 

  • Kolay AK (2008) Water and crop growth. Atlantic Publishers, New Delhi

    Google Scholar 

  • Kolekar RM, Sujay V, Shirasawa K et al (2016) QTL mapping for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica 209(1):147–156. https://doi.org/10.1007/s10681-016-1651-0

    Article  CAS  Google Scholar 

  • Kolekar RM, Sukruth M, Shirasawa K et al (2017) Marker-assisted backcrossing to develop foliar disease resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed 136(6):1–6

    Google Scholar 

  • Kona P, Mahatma MK, Gangadhara K et al (2019) Confectionery traits evaluation in advanced breeding lines (ABLs) of groundnut. In: 4th International conference on advances in agriculture & animal sciences towards global food security agriculture & animal husbandry, p 58

    Google Scholar 

  • Kona P, Mahatma MK, Gangadhara K et al (2020) Variation for physical and nutritional quality traits in advanced breeding lines of groundnut. National seminar on technological innovations in oilseed crops for enhancing productivity, profitability and nutritional security. J Oilseeds Res 37(Special Issue):3

    Google Scholar 

  • Krapovickas A (1969) The origin, variability and spread of the groundnut (Arachis hypogaea). In: Ucko PJ, Falk IS (eds) The domestication and exploitation of plants and animals. Gerald Duckworth, London, pp 424–441

    Google Scholar 

  • Krapovickas A (1973) Evolution of the genus Arachis. In: Moav R (ed) Agricultural genetics, selected topics. National Council for Research and Development, Jerusalem

    Google Scholar 

  • Krapovickas A (1990) The groundnut Arachis hypogaea L. In: Smartt J (ed) Grain legumes. Cambridge University Press. Chapter 3, pp 30–84

    Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomy of the genus Arachis. Bonplandia 8:1–186

    Google Scholar 

  • KrapovickasA RVA (1960) La nomenclatura de las subspecies y variedades de Arachis hypogaea L. Revista Invest Agric 14(12):197–122

    Google Scholar 

  • Krapovickas A, Rigoni VA (1957) Nuevasespecies de Arachis vinculadas al problem del origen del mani. Darwiniana 11:431–455

    Google Scholar 

  • Kulkarni JH, Ravindra V, Sojitra VK et al (1988) Growth, nodulation and N uptake of groundnut (Arachis hypogaea L.) as influenced by water deficits stress at different phenophase. Oleagineus 43(11):415–419

    Google Scholar 

  • Kumar J, Jaiswal V, Kumar A et al (2011) Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crops Res 123:226–233. https://doi.org/10.1016/j.fcr.2011.05.013

    Article  Google Scholar 

  • Kumar V, Lukose C, Bagwan NB et al (2012) Occurrence of Alternaria leaf blight of groundnut in Gujarat and reaction of some genotypes against the disease. Indian Phytopath 65(1):25–30

    Google Scholar 

  • Lal M (2001) Future climate change: implications for Indian summer monsoon and its variability. Curr Sci 81:1205

    Google Scholar 

  • Lavia GI (1998) Karyotype of Arachis palustris and A. praecox (section Arachis), two species with basic chromosome number x=9. Cytologia 63:177–181

    Google Scholar 

  • Lavia GI (2000) Chromosome studies in wild Arachis (Leguminosae). Caryologia 53:277–281

    Google Scholar 

  • Leal-Bertioli SCM, Moretzsohn MC, Roberts PA et al (2015) Genetic mapping of resistance to Meloidogyne arenaria in Arachis stenosperma: a new source of nematode resistance for peanut. G3 (Bethesda) 6(2):377–390

    PubMed  Google Scholar 

  • Leal-Bertioli SCM, Cavalante U, Gouvea EG et al (2016) Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker assisted selection. G3 (Bethesda) 5:1403–1413

    Google Scholar 

  • Li Y, Li L, Zhang X et al (2017) QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica 213:57

    Google Scholar 

  • Liang Y, Baring M, Wang S et al (2017) Mapping QTLs for leafspot resistance in peanut using SNP-based next-generation sequencing markers. Plant Breed Biotechnol 5(2):115–122. https://doi.org/10.9787/PBB.2017.5.2.115

    Article  Google Scholar 

  • Luo Z, Cui R, Chavarro C et al (2020) Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 133:1201–1212

    CAS  PubMed  Google Scholar 

  • Mallikarjuna N, Senthilvel S, Hoisington DA (2011) Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genet Resour Crop Evol 58:889–907

    Google Scholar 

  • Martin JP (1967) A contribution to the study of certain hereditary characters of agronomic importance in the groundnut. Oleagineux 22:673–676

    Google Scholar 

  • Matokot L, Mapangoa Divassa S, Delobel A (1987) Evaluation of Caryedon serratus (Coleoptera: Bruchidae) population in stored groundnut in Congo. Agron Trop 42:69–74

    Google Scholar 

  • Mayee CD, Datar VV (1988) Diseases of groundnut in the tropics. Rev Trop Plant Pathol 5:85–118

    Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    CAS  PubMed  Google Scholar 

  • Mehan VK (1989) Screening of groundnuts for resistance to seed invasion by Aspergillus fIavus and to aflatoxin production. In: Aflatoxin contamination of groundnut: proceedings of the international workshop, 6–9 October 1987. ICRISAT Center, Patancheru, pp 323–334

    Google Scholar 

  • Mehan VK, Reddy DD, McDonald D (1993) Resistance in groundnut genotypes to Kalahasti malady caused by the stunt nematode, Tylenchorhynchus brevilineatus. Int J Pest Manag 39(2):201–203

    Google Scholar 

  • Mehan VK, Mayee CD, McDonald D et al (1995) Resistance in groundnut to Sclerotium rolfsii-caused stem and pod rots. Int J Pest Manag 41:79–83

    Google Scholar 

  • Misra JB (2006) Nutritive value of groundnut and composition of Indian groundnut cultivars. In: Basu MS, Sing NB (eds) Groundnut research in India. National Research Centre for Groundnut, Junagarh, pp 273–291

    Google Scholar 

  • Mishra GP, Radhakrishnan T, Kumar A et al (2015) Advancements in molecular marker development and their applications in the management of biotic stresses in peanuts. Crop Prot 77:74–86. https://doi.org/10.1016/j.cropro.2015.07.019

    Article  CAS  Google Scholar 

  • Mixon AC, Rogers KM (1973) Peanut accessions resistant to seed infection by Aspergillus flavus. Agron J 65:560–562

    Google Scholar 

  • Mondal S, Badigannavar AM (2010) Molecular diversity and association of SSR markers to rust and late leaf spot resistance in cultivated groundnut (Arachis hypogaea L.). Plant Breed 129:68–71

    CAS  Google Scholar 

  • Mondal S, Badigannavar AM (2018) Mapping of a dominant rust resistance gene revealed two R genes around the major Rust QTL in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 131:1671–1681. https://doi.org/10.1007/s00122-018-3106-6

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Badigannavar AM, D’Souza SF (2012a) Development of genic molecular markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 188(2):163–173

    CAS  Google Scholar 

  • Mondal S, Badigannavar AM, D’Souza SF (2012b) Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii. Mol Breed 29(2):467–476

    CAS  Google Scholar 

  • Mondal S, Hadapad AB, Hande PA et al (2014a) Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.). Mol Breed 33:961–973

    CAS  Google Scholar 

  • Mondal S, Hande P, Badigannavar AM (2014b) Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut. J Phytopathol 162:548–552

    CAS  Google Scholar 

  • Moss JP, Ramanatha Rao V (1995) The peanut-reproductive development to plant maturity. In: Pattee HE, Stalker HT (eds) Advances in peanut science. American Peanut Research and Education Society, Stillwater, OK, pp 1–13

    Google Scholar 

  • Murthy TGK, Reddy PS (1993) Genetics of groundnut. In: Cytogenetics and genetics of groundnuts. Intercept, London, pp 144–269

    Google Scholar 

  • Muthuswamy M, Subramanian N, Usman KM (1991) Groundnut genotypes with multiple resistance to foliar disease. Madras Agric J 78(1-4):42–44

    Google Scholar 

  • Nagaraja R, Venugopal R, Murthy R et al (2005) Evaluation of groundnut genotypes against peanut bud necrosis virus (PBNV) and its thrips vector at Bangalore. Environ Ecol 23(Spl-l):118–120

    Google Scholar 

  • Nagda AK, Dashora A (2005) New groundnut variety Pratap Mungphali 2 released in Rajasthan. Int Arachis Newslett 25:15–17

    Google Scholar 

  • Nagda AK, Joshi VN (2004) New groundnut variety Pratap Mungphali 1 released in Rajasthan. Int Arachis Newslett 24:24–25

    Google Scholar 

  • Nageswara Rao RC, Singh S, Sivakumar MVK et al (1985a) Effect of water deficit at different growth phase of peanut. I yield response. Agron J 77:782–786

    Google Scholar 

  • Nageswara Rao RC, Singh S, Sivakumar MVK et al (1985b) Effect of water deficit at different growth phase of peanut. I yield response. Agron J 77:782–786

    Google Scholar 

  • Nautiyal PC, Bandyopadhyay A, Misra RC (2004) Drying and storage methods to prolong seed viability of summer groundnut (Arachis hypogaea) in Orissa. Indian J Agric Sci 74(6):316–320

    Google Scholar 

  • Nawade B, Bosamia TC, Radhakrishnan T et al (2016) Insights into the Indian peanut genotypes for ahFAD2 gene polymorphism regulating its oleic and linoleic acid fluxes. Front Plant Sci 7:1271. https://doi.org/10.3389/fpls.2016.01271

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawade B, Mishra GP, Radhakrishnan T et al (2018) High oleic peanut breeding: achievements, perspectives, and prospects. Trends Food Sci Technol 78:107–119. https://doi.org/10.1016/j.tifs.2018.05.022

    Article  CAS  Google Scholar 

  • Nawade B, Mishra GP, Radhakrishnan T et al (2019) Development of high oleic peanut lines through marker-assisted introgression of mutant ahFAD2 alleles and its fatty-acid profiles under open-field and controlled conditions. 3 Biotech 9:243. https://doi.org/10.1007/s13205-019-1774-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson SC, Simpson CE, Starr JL (1989) Resistance to Meloidogyne arenaria in Arachis spp. germplasm. J Nematol 21:654–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson SC, Starr JL, Simpson CE (1990) Expression of resistance to Meloidogyne arenaria in Arachis batizocoi and A. cardenasii. J Nematol 22:423–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam SN (2002) Aflatoxin management: host-plant resistance. In: Aflatoxin detection, quantitative estimation and management. Proceedings of a consultative meeting, 8–9 January 2001, ICRISAT Patancheru. Scottish Crop Research Institute, Invergowrie, p 16

    Google Scholar 

  • Nigam SN (2014) Groundnut at a glance. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 121

    Google Scholar 

  • Nigam SN, Chandra S, Sridevi KR et al (2005) Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146:433–439

    Google Scholar 

  • Nigam SN, Dwivedi SL, Gibbons RW (1991a) Groundnut breeding: constraints, achievements and future possibilities. Plant Breed Abstr 10(61):1128–1136

    Google Scholar 

  • Nigam SN, Dwivedi SL, Rao YLC et al (1991b) Registration of ‘ICGS l’ peanut cultivar. Crop Sci 31:1382–1383

    Google Scholar 

  • Nigam SN, Dwivedi SL, Rao YLC et al (1991c) Registration of ‘ICGV 87141’ peanut. Crop Sci 31:1096

    Google Scholar 

  • Nigam SN, Dwivedi SL, Reddy LJ et al (1989) An update on groundnut breeding activities at ICRISAT centre with particular reference to breeding and selection for improved quality. In: Proceedings of the third regional groundnut workshop, held during 13–18 March 1988, Lilongwe, Malwi, pp 115–125

    Google Scholar 

  • Nigam SN, Prasada Rao RDVJ, Bhatnagar-Mathur P et al (2012) Genetic management of virus diseases in peanut. In: Plant breeding reviews. Wiley, Hoboken, NJ, pp 293–356

    Google Scholar 

  • Nigam SN, Waliyar F, Aruna R et al (2009) Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci 36(94):42–49

    Google Scholar 

  • Nordan AJ, Smith OD, Gorbat DW (1982) Breeding of the cultivated peanut. In: Pattee HE, Young CT (eds) Peanut science and technology. American Peanut Research and Education Society, Yoakum, TX, pp 95–122

    Google Scholar 

  • Norden AJ, Rodriguez VA (1971) Artificial hybridization of peanuts. Oleagineux 26(3):159–162

    Google Scholar 

  • O’Keefe SF, Wiley VA, Knauft DA (1993) Comparison of oxidative stability of high- and normal-oleic peanut oils. J Am Oil Chem Soc 70(5):441–550

    Google Scholar 

  • Omran ESE (2017) Early sensing of peanut leaf spot using spectroscopy and thermal imaging. Arch Agron Soil Sci 63(7):883–896

    CAS  Google Scholar 

  • Paik-Ro OG, Smith RL, Knauft DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208

    CAS  PubMed  Google Scholar 

  • Palaiah P, Narendrappa T, Mallesh SB (2019) Screening of groundnut varieties and germplasm against collar rot, stem rot and dry root rot diseases. Int J Curr Microbiol App Sci 8(6):2321–2328

    Google Scholar 

  • Pandey AK, Sudini HK, Upadhyaya HD et al (2019) Hypoallergen peanut lines identified through large-scale phenotyping of global diversity panel: providing hope towards addressing one of the major global food safety concerns. Front Genet 10:1177

    PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Guo B, Holbrook CC et al (2014a) Molecular markers, genetic maps, and QTLs for molecular breeding in peanut. In: Mallikarjuna N (ed) Genetics, genomics and breeding of peanuts. CRC, Boca Raton, FL, pp 79–113

    Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P et al (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    CAS  PubMed  Google Scholar 

  • Pandey MK, Roorkiwal M, Singh VK et al (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455

    PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Wang ML, Qiao L et al (2014b) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133

    PubMed  PubMed Central  Google Scholar 

  • Patel BR, Vora VJ (1981) Efficacy of different insecticides for the control of groundnut jassid, Empoasca kerri Pruthi. Pesticides 15:33–34

    CAS  Google Scholar 

  • Patel K, Thankappan R, Mishra GP (2017) Transgenic peanut (Arachis hypogaea L.) overexpressing mtlD gene showed improved photosynthetic, physio-biochemical and yield-parameters under soil-moisture deficit stress in lysimeter system. Front Plant Sci 8:1881. https://doi.org/10.3389/fpls.2017.01881

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel KG, Mandaliya VB, Mishra GP et al (2016) Transgenic peanut overexpressing mtlD gene confers enhanced salinity-stress tolerance via mannitol accumulation and differential antioxidative responses. Acta Physiol Plant 38:181. https://doi.org/10.1007/s11738-016-2200-0

    Article  CAS  Google Scholar 

  • Patil AS, Thankappan R, Mehta R et al (2017) Evaluation of transgenic peanut plants encoding coat protein and nucleocapsid protein genes for resistance to tobacco streak virus and peanut bud necrosis virus. J Environ Biol 38:187–196. https://doi.org/10.22438/jeb/38/2/MS-191

    Article  Google Scholar 

  • Pattee HE, Isleib TG, Giesbrecht FG et al (2000) Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem 48(3):757–763

    CAS  PubMed  Google Scholar 

  • Payne GA (1998) Process of contamination by aflatoxin-producing fungi and their impact on crops. In: Sinha KK, Bhatnagar D (eds) Mycotoxins in agriculture and food safety. Marcel Decker, New York, pp 279–300

    Google Scholar 

  • Peek MS, Forseth IN (2003) Microhabitat dependent responses to resource pulses in the arid land perennial, Cryptantha flava. J Ecol 91:457–466

    Google Scholar 

  • Penaloza APS, Pozzobon MT, Valls JFM (1996) Cytogenetic findings in wild species of Arachis (leguminosae). In: Resumenes del 42o congresso Nacional de Genetica, Caxambu, MG. BRASIL

    Google Scholar 

  • Prasad TV, Gedia MV, Savaliya SD (2012) Screening of groundnut cultivars against seed beetle, Caryedon serratus. Ind J Plant Prot 40(4):342–343

    Google Scholar 

  • Qin D, Chen Z, Averyt KB et al (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Qin H, Feng S, Chen C et al (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaeaL.) constructed from two RIL populations. Theor Appl Genet 124:653–664. https://doi.org/10.1007/s00122-011-1737-y

    Article  PubMed  Google Scholar 

  • Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262

    Google Scholar 

  • Rajgopal K, Bandyopadhyaya A (1999) Elite groundnut germplasm—a ready reference. Technical Bulletin, NRCG. National Research Centre for Groundnut, Junagadh, p 35

    Google Scholar 

  • Raman VS (1976) Cytogenetics and breeding in Arachis. Today and Tomorrow’s Printers and Publishers, New Delhi, p 84

    Google Scholar 

  • Ramanathan T (2004) Groundnut. In: Ramanathan T (ed) Applied genetics of oilseed crops. Daya Publishing House, New Delhi, pp 15–73

    Google Scholar 

  • Rao VR, Murty UR (1994) Botany-morphology and anatomy. In: Smart J (ed) The groundnut crop: a scientific basis for improvement. Chapman & Hall, London, pp 45–95

    Google Scholar 

  • Rathnakumar AL, Singh R, Parmar DL et al (2013) Groundnut: a crop profile and compendium of notified varieties of India. Directorate of Groundnut Research, Junagadh, p 118

    Google Scholar 

  • Ravindra H, Kenchangowda PV, Sehgal M et al (2013) Evaluation of groundnut germplasm for resistance against root-knot nematodes. Pak J Nematol 31(2):179–181

    Google Scholar 

  • Reddy AS, Prasad RDVJ, Thirumala-Devi K et al (2002) Occurrence of tobacco streak virus on peanut (Arachis hypogea L.) in India. Plant Dis 86:173–178

    CAS  PubMed  Google Scholar 

  • Reddy AS, Reddy LJ, Abdurahman MN et al (2000) Identification of resistance to peanut bud necrosis virus (PBNV) in wild Arachis germplasm. Ann Appl Biol 137:135–139

    Google Scholar 

  • Reddy GP, Reddy PS, Murthi AN (1970) An improved crossing technique in groundnut. Andhra Agric J 17(4):124–127

    Google Scholar 

  • Reddy LJ, Nigam SN, Moss JP et al (1996) Registration of ICGV 86699 peanut germplasm line with multiple disease and insect resistance. Crop Sci 36:821

    Google Scholar 

  • Robledo G, Seijo G (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046

    PubMed  Google Scholar 

  • Roy BC, Shiyani RL (2000) Rain-fed groundnut in India: prioritizing production constraints and implication for future research. Bangladesh J Agric Econ 23(1–2):1–16

    Google Scholar 

  • Rucker KS, Kvien CK, Holbrook CC et al (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 22:14–18

    Google Scholar 

  • Ryan J, Spencer D (2001) Future challenges and opportunities for agricultural land in the semi-arid tropics. ICRISAT, Patancheru

    Google Scholar 

  • Sanders TH, Cole RJ, Blankenship PD et al (1993) Aflatoxin contamination of peanut from plants drought stressed in pod root zones. Peanut Sci 20:5–8

    CAS  Google Scholar 

  • Sarkar T, Radhakrishnan T, Kumar A et al (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One 9(12):e110507. https://doi.org/10.1371/journal.pone.0110507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar T, Radhakrishnan T, Kumar A et al (2016) Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) crop conferred tolerance to soil-moisture deficit stress. Front Plant Sci 7:935. https://doi.org/10.3389/fpls.2016.00935

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar T, Thankappan T, Mishra GP et al (2019) Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants. Physiol Mol Biol Plants 25:1323–1334. https://doi.org/10.1007/s12298-019-00711-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crop Res 122:49–59

    Google Scholar 

  • Sasser JN (1980) Root-knot nematodes: a global menace to crop production. Plant Dis 64:36–41

    Google Scholar 

  • Sasser JN, Freckman DW (1987) A world prospective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Hyattsville, MD, pp 7–14

    Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A et al (2004) Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    CAS  PubMed  Google Scholar 

  • Selvaraj MG, Narayana M, Schubert AM et al (2009) Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol 12(2):E13

    Google Scholar 

  • Sharma HC, Pampapathy G, Dwivedi SL et al (2003) Mechanisms and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96(6):1886–1897

    CAS  PubMed  Google Scholar 

  • Sharma SB, McDonald D (1990a) Global status of nematode problems of groundnut, pigeonpea, chickpea, sorghum and pearl millet, and suggestions for future work. Crop Prot 6:453–458

    Google Scholar 

  • Sharma SB, McDonald D (1990) Global status of nematode problems of groundnut, pigeonpea, chickpea, sorghum and pearl millet and suggestions for future work. Crop Prot 9:453–458. https://doi.org/10.1016/0261-2194(90)90136-U

    Article  Google Scholar 

  • Shasidhar Y, Variath MT, Vishwakarma MK et al (2020) Improvement of three Indian popular groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. Crop J 8:1–15. https://doi.org/10.1016/j.cj.2019.07.001

    Article  Google Scholar 

  • Shasidhar Y, Vishwakarma MK, Pandey MK et al (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci 8:794

    PubMed  PubMed Central  Google Scholar 

  • Shew BB, Wynne JC, Campbell CL (1984) Spatial pattern of southern stem rot caused by Sclerotium rolfsii in six North Carolina groundnut fields. Phytopathology 74:730–735

    Google Scholar 

  • Simpson CE, Nelson SC, Starr JL et al (1993) Registration of TxAG-6 and TxAG-7 peanut germplasm lines. Crop Sci 33:1418

    Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Sci 41:918

    Google Scholar 

  • Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungal and bacterial wilt diseases: an update and appraisal. Information Bulletin No. 50. ICRISAT, Patancheru, p 48

    Google Scholar 

  • Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Theor Appl Genet 61:305–314

    CAS  PubMed  Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystematics and genetic resources. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman & Hall, London, pp 96–137

    Google Scholar 

  • Singh AK, Smartt J (1998) The genome donors of of the groundnut/ peanut (Arachis hypogaea L.) revisited. Genet Resour Crop Evol 45:113–118

    Google Scholar 

  • Singh AL, Basu MS (2005) Screening and selection of P-efficient groundnut genotypes for calcareous soils in India. In: Li CJ et al (eds) Plant nutrition for food security, human health and environmental protection. (Plant and soil series). 15th international plant nutrition colloquium, China Agricultural University, Beijing, 14–19 Sept. 2005. Tsinghua University Press, Beijing, pp 1004–1005

    Google Scholar 

  • Singh AL, Basu MS, Singh NB (2004) Mineral disorders of groundnut. National Research Centre for groundnut (ICAR), Junagadh, p 85

    Google Scholar 

  • Singh BR, Gupta SP, Tripathi DP et al (1994) Response of groundnut lines to bud necrosis disease. Madras Agric J 81:577

    Google Scholar 

  • Singh D, Radhakrishnan T, Kumar V et al (2015a) Molecular characterization of Aspergillus flavus isolates from peanut fields of India using AFLP. Braz J Microbiol 46(3):673–682. https://doi.org/10.1590/S1517-838246320131115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Radhakrishnan T, Kumar V et al (2015b) Morphological and toxigenic variability in the Aspergillus flavus isolates from peanut (Arachis hypogaea L.) production system in Gujarat (India). J Environ Biol 36:441–449

    PubMed  Google Scholar 

  • Singh F, Diwakar B (1993) Nutritive value and uses of pigeonpea and groundnut. Manual. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Singh P, Nedumaran S, Ntare BR et al (2014) Potential benefits of drought and heat tolerance in groundnut for adaptation to climate change in India and West Africa. Mitig Adapt Strateg Glob Chang 19:509–529

    Google Scholar 

  • Singh V, Nandagopal V, Gor HK et al (1993) BG2—a possible donor parent for resistance to Helicoverpa and Spodoptera. Groundnut News 5:2–3

    Google Scholar 

  • Smartt J (1990) Grain legumes. In: Evolution and genetic resources. Cambridge University Press, Cambridge, pp 30–84

    Google Scholar 

  • Smartt J, Gregory W (1967) Interspecific cross compatibility between the cultivated peanut Arachis hypogaea L. and other members of the genus Arachis. Oleagineux 22:455–459

    Google Scholar 

  • Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. I cytogenetic studies of putative genome donor. Euphytica 27:665–675

    Google Scholar 

  • Soni P, Gangurde SS, Ortega-Beltran A et al (2020) Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Front Microbiol 11:227

    PubMed  PubMed Central  Google Scholar 

  • Stalker HT (1980) Cytogenetic investigation in the genus Arachis. In: Proceedings of the International Workshop on groundnut. ICRISAT, Patancheru, pp 73–81

    Google Scholar 

  • Stalker HT (1991) A new species in Arachis of peanuts with a ’D’ genome. Am J Bot 78:630–637

    Google Scholar 

  • Stalker HT (1992) Utilizing Arachis germplasm resources. In: 2nd International workshop on groundnuts. 25–30 Nov. 1991, ICRISAT, India, pp 281–285

    Google Scholar 

  • Stalker HT (1997) Peanut (Arachis hypogaea L.). Field Crop Res 53(1–3):205–217. https://doi.org/10.1016/S0378-4290(97)00032-4

    Article  Google Scholar 

  • Stalker HT (2012) Utilizing wild species for peanut improvement. Crop Sci 57(3):1102–1120

    Google Scholar 

  • Stalker HT, Beute MK, Shew BB et al (2002) Registration of two root knot nematode-resistant peanut germplasm lines. Crop Sci 42:312–313

    PubMed  Google Scholar 

  • Stalker HT, Dalmacio RD (1981) Chromosomes of Arachis species, section Arachis (Leguminosae). J Hered 72:403–408

    Google Scholar 

  • Stalker HT, Dalmacio RD (1986) Karyotype analysis and relationship among varieties of Arachis hypogaea L. Cytologia 51:617–629

    Google Scholar 

  • Stalker HT, Shew BB, Beute MK et al (1995) Meloidogyne arenaria resistance in advanced-generation Arachis hypogaea × A. cardenasii hybrids. Proc Am Peanut Res Educ Soc 27:241

    Google Scholar 

  • Stalker HT, Simpson CE (1995) Germplasm resources in Arachis. In: Pattee HE, Stalker HT (eds) Advances in peanut science. American Peanut Research and Education Society., Stillwater, OK, pp 14–53

    Google Scholar 

  • Stalker HT, Moss JP (1987) Speciation, cytogenetics, and utilization of Arachis species. Adv Agron 41:1–40

    Google Scholar 

  • Stansell JR, Pallas JE Jr (1985) Yield and quality response of Florunner peanut to applied drought at several growth stages. Peanut Sci 12:64–70

    Google Scholar 

  • Starr JL, Simpson CE, Lee TA Jr (1995) Resistance to Meloidogyne arenaria in advanced generation breeding lines of peanut. Peanut Sci 22:59–61

    Google Scholar 

  • Stevenson PC, Blaney WM, Simmonds MSJ et al (1993) The identification and characterization of resistance in wild species of Arachis to Spodoptera litura (Lepidoptera: Noctuidae). Bull Entomol Res 83:421–429

    Google Scholar 

  • Subrahmanyam P, McDonald D, Waliyar F et al (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. In: Information bulletin No 47. ICRISAT, Patancheru

    Google Scholar 

  • Subrahmanyam P, Williams JH, McDonald D et al (1984) The influence of foliar diseases and their control by selective fungicides on a range of groundnut genotypes. Ann Appl Biol 104:467–476

    CAS  Google Scholar 

  • Sujay V, Gowda MVC, Pandey MK et al (2012) Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30(2):773–788. https://doi.org/10.1007/s11032-011-9661-z

    Article  CAS  PubMed  Google Scholar 

  • Sukruth M, Paratwagh SA, Sujay V et al (2015) Validation of markers linked to late leaf spot and rust resistance, and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut (Arachis hypogaea L.). Euphytica 204:343–351. https://doi.org/10.1007/s10681-014-1339-2

    Article  CAS  Google Scholar 

  • Sushmita S, Singh AL, Mahatma MK et al (2020) Folder “phytic acid: an inevitable antinutrient in groundnut”, pp 1–4

    Google Scholar 

  • Tanguilig VC, Yambao EB, O’Toole JC et al (1987) Water stress effect on leaf elongation, leaf water potential, transpiration and nutrient uptake of rice, maize and soybean. Plant Soil 103:155–168

    Google Scholar 

  • Thirumalaisamy PP, Kumar N, Radhakrishnan T et al (2014) Phenotyping of groundnut genotypes for resistance to sclerotium stem rot. J Mycol Plant Pathol 4(44):459–462

    Google Scholar 

  • Tseng YC, Tillman BL, Peng Z et al (2016) Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EPTM “113.”. BMC Genet 17(1). https://doi.org/10.1186/s12863-016-0435-9

  • UNSCN (2004) 5th report on the world nutrition situation: nutrition for improved development outcomes. United Nations System Standing Committee on Nutrition (SCN), Geneva

    Google Scholar 

  • Upadhyaya HD, Sharma S, Dwivedi SL (2011) Arachis. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14387-8_1

    Chapter  Google Scholar 

  • Upadhyaya HD, Dronavalli N, Singh S et al (2012) Variability and stability for kernel iron and zinc contents in the ICRISAT mini core collection of peanut. Crop Sci 52:2628–2637

    CAS  Google Scholar 

  • Valls JFM, Simpson CE (1997) Novasespecies de Arachis (Leguminosae). In: Veiga RFA, Bovi MLA, Betti JA, Voltan RBQ (eds) programas e resumos del I Simposio Latinoamericano de resources Geneticos Veg. Etais. Campinas, Brasil

    Google Scholar 

  • Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci 242:98–107. https://doi.org/10.1016/j.plantsci.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Janila P et al (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127(8):1771–1781. https://doi.org/10.1007/s00122-014-2338-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasanthi RP, Reddy JR, Rajagopal N et al (2003) A Kalahasty malady resistant groundnut variety suitable for post rainy season cultivation in Andhra Pradesh, India. Int Arachis Newslett 23:17–19

    Google Scholar 

  • Vasanthi RP, Reddy PV, Jayalaskhmi V et al (2006) A high-yielding drought-tolerant groundnut variety abhaya. JSAT Agric Res 2(1):1–2

    Google Scholar 

  • Von Linnaeus C (1753) Species plantarum. Laurentii Salviae, Holmia, p 377

    Google Scholar 

  • Vorasoot N, Jintrawet A, Limpinantana V et al (1985) Rainfall analysis for the northeast Thailand. Faculty of Agriculture, KhonKaen University, KhonKaen

    Google Scholar 

  • Vorasoot N, Songsri P, Akkasaeng C et al (2003) Effect of water stress on yield and agronomic characters of peanut (Arachis hypogaea L.). Songklanakarin J Sci Technol 25:283–288

    Google Scholar 

  • Wang H, Pandey MK, Qiao L et al (2013) Genetic mapping and quantitative trait loci analysis for disease resistance using F2 and F5 generation-based genetic maps derived from ‘Tifrunner’ × ‘GT-C20’ in peanut. Plant Genome 6:1–10. https://doi.org/10.3835/plantgenome.2013.05.0018

    Article  Google Scholar 

  • Wang ML, Khera P, Pandey MK et al (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One 10(4):e0119454. https://doi.org/10.1371/journal.pone.0119454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xu P, Yin L et al (2018) Genomic and transcriptomic analysis identified gene clusters and candidate genes for oil content in peanut (Arachis hypogaea L.). Plant Mol Biol Report 36(3):518–529

    PubMed  PubMed Central  Google Scholar 

  • Welch R (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:495S–499S

    PubMed  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs—productive, sustainable, nutritious. Field Crop Res 60:1–10

    Google Scholar 

  • Wightman JA, Amin PW (1988) Groundnut pests and their control in semi-arid tropics. Trop Pest Manag 34:218–226

    Google Scholar 

  • Wightman JA, Dick KM, RangaRao GV et al (1990) Pests of groundnut in the semi-arid tropics. In: Singh SR (ed) Insect pests of legumes. Longman and Sons Ltd, New York, pp 243–322

    Google Scholar 

  • Will ME, Holbrook CC, Wilson DM (1994) Evaluation of field inoculation techniques for screening peanut genotypes for reaction to preharvest A. flavus group infection and aflatoxin contamination. Peanut Sci 21:122–125

    Google Scholar 

  • Wilson JN, Chopra R, Baring MR et al (2017) Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Trop Plant Biol 10:1–17

    CAS  Google Scholar 

  • Wynne JC, Beute MK, Nigam SN (1991) Breeding for disease resistance in peanut (Arachis hypogaea L.). Annu Rev Phytopathol 29:279–303

    Google Scholar 

  • Wynne JE, Gregory WC (1981) Peanut breeding. Adv Agron 34:39–72

    Google Scholar 

  • Xue HQ, Isleib TG, Payne GA et al (2004) Evaluation of postharvest aflatoxin production in peanut germplasm with resistance to seed colonization and preharvest aflatoxin contamination. Peanut Sci 31:124–134

    CAS  Google Scholar 

  • Yeri SB, Bhat RS (2016) Development of late leaf spot and rust resistant backcross lines in JL 24 variety of groundnut (Arachis hypogaea L.). Electron J Plant Breed 7:37–41. https://doi.org/10.5958/0975-928X.2016.00005.3

    Article  Google Scholar 

  • Yu B, Huai D, Huang L et al (2019) Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet 20(1). https://doi.org/10.1186/s12863-019-0734-z

  • Zakaluk R, Sri Ranjan R (2008) Predicting the leaf water potential of potato plants using RGB reflectance. Can Biosyst Eng/Genie Biosyst au Can 50(7):1–12

    Google Scholar 

  • Zhou X, Xia Y, Liao J et al (2016) Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut (Arachis hypogaea L.) under multi-environments. PLoS One 11(11):e0166873. https://doi.org/10.1371/journal.pone.0166873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang W, Chen H, Yang M et al (2019) The genome of cultivated groundnut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51:865–876

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radhakrishnan, T., Kona, P., Ajay, B.C., Kumar, N. (2022). Groundnut Breeding. In: Yadava, D.K., Dikshit, H.K., Mishra, G.P., Tripathi, S. (eds) Fundamentals of Field Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-16-9257-4_16

Download citation

Publish with us

Policies and ethics