Skip to main content

Gene-Gut-Brain Axis: Gene-Based Personalized Medicine

  • Chapter
  • First Online:
Book cover Nutrigenomics and the Brain

Part of the book series: Nutritional Neurosciences ((NN))

  • 402 Accesses

Abstract

The human genome is composed of three billion base pairs that include coding and noncoding sequences. The coding sequences encode for more than 20,000 genes that are responsible for different human phenotypes (Salzberg 2018). While the primary sequence of nucleotide in the human genome dictates the individual’s traits, modification of DNA nucleotide or the histone proteins has profound effects on the gene expression pattern and the resulting phenotypes. Such modifications are known as epigenetic modifications which substantially affects the individual’s phenotypic characteristics without changing the primary structure of the DNA (Yi and Goodisman 2021). A study of identical twins revealed that interaction between the genome and the environment considerably affects the phenotypic outcome irrespective of the similarity of the primary sequence of the DNA (Fraga et al. 2005). While environmental factors can affect the individual’s phenotype through changing the primary sequence of the DNA (induction of mutations), modification of the epigenome has a significant impact as a mediator of environmental effects on the individual’s phenotypic characteristics. Among the environmental factors that modulate the epigenome, nutrition has a great influence (Mullins et al. 2020). A study of the interaction between the nutrition and individual’s genome in order to guide individually tailored nutritional intervention is a promising field not only for diseases prevention and management but also for health improvement (Astley 2007; Peregrin 2001). In the future, personalized nutritional advice will be easily suggested based on the individual genetic variation by the aid of the advanced “omics” approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjakly M et al (2013) Genistein and daidzein: different molecular effects on prostate cancer. Anticancer Res 33(1):39–44

    CAS  PubMed  Google Scholar 

  • Afshin A et al (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393(10184):1958–1972

    Article  Google Scholar 

  • Ağagündüz D, Gezmen-Karadağ M (2019) Association of FTO common variant (rs9939609) with body fat in Turkish individuals. Lipids Health Dis 18(1):1–12

    Article  CAS  Google Scholar 

  • Alam I et al (2019) Relationship of nutrigenomics and aging: involvement of DNA methylation. J Nutr Intermed Metab 16:100098

    Article  Google Scholar 

  • Allayee H et al (2008) Nutrigenetic association of the 5-lipoxygenase gene with myocardial infarction. Am J Clin Nutr 88(4):934–940

    Article  CAS  PubMed  Google Scholar 

  • Ardekani AM, Jabbari S (2009) Nutrigenomics and cancer. Avicenna J Med Biotechnol 1(1):9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astley SB (2007) An introduction to nutrigenomics developments and trends. In: Genes and nutrition. Springer

    Google Scholar 

  • Atanasov AG et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73(1):417–435

    Article  CAS  PubMed  Google Scholar 

  • Bordoni L, Gabbianelli R (2019) Primers on nutrigenetics and nutri(epi)genomics: origins and development of precision nutrition. Biochimie 160:156–171

    Article  CAS  PubMed  Google Scholar 

  • Braicu C et al (2017) Nutrigenomics in cancer: revisiting the effects of natural compounds. In: Seminars in cancer biology. Elsevier

    Google Scholar 

  • Castaner O et al (2012) Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am J Clin Nutr 95(5):1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Caulfield T et al (2010) Direct-to-consumer genetic testing: good, bad or benign? Clin Genet 77(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Choi EJ, Kim G-H (2013) Antiproliferative activity of daidzein and genistein may be related to ERα/c-erbB-2 expression in human breast cancer cells. Mol Med Rep 7(3):781–784

    Article  CAS  PubMed  Google Scholar 

  • Chuengsamarn S et al (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35(11):2121–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Control, C.F.D. and Prevention (2009) The power of prevention: chronic disease... the public health challenge of the 21st century. National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  • Corella D, Ordovas JM (2009) Nutrigenomics in cardiovascular medicine. Circ Cardiovasc Genet 2(6):637–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Santis S et al (2019) Extra virgin olive oil: lesson from nutrigenomics. Nutrients 11(9):2085

    Article  PubMed Central  CAS  Google Scholar 

  • Del Follo-Martinez A et al (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 65(3):494–504

    Article  PubMed  CAS  Google Scholar 

  • Di Renzo L et al (2019) Role of personalized nutrition in chronic-degenerative diseases. Nutrients 11(8):1707

    Article  CAS  PubMed Central  Google Scholar 

  • Du Q et al (2013) Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol Rep 29(5):1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Duicu C et al (2016) FTO rs 9939609 SNP is associated with adiponectin and leptin levels and the risk of obesity in a cohort of romanian children population. Medicine 95(20)

    Google Scholar 

  • Edenberg HJ (2007) The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30(1):5

    PubMed  PubMed Central  Google Scholar 

  • Fawcett KA, Barroso I (2010) The genetics of obesity: FTO leads the way. Trends Genet 26(6):266–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci 102(30):10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frary CD, Johnson RK, Wang MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105(1):110–113

    Article  PubMed  Google Scholar 

  • Fu J, Hofker M, Wijmenga C (2015) Apple or pear: size and shape matter. Cell Metab 21(4):507–508

    Article  CAS  PubMed  Google Scholar 

  • Gaboon NE (2011) Nutritional genomics and personalized diet. Egypt J Med Hum Genet 12(1)

    Google Scholar 

  • Garrod A (1902) The incidence of alkaptonuria: a study in chemical individuality. Lancet 160(4137):1616–1620

    Article  Google Scholar 

  • German JB (2005) Genetic dietetics: nutrigenomics and the future of dietetics practice. J Am Diet Assoc 105(4):530–531

    Article  PubMed  Google Scholar 

  • Hardman WE (2014) Diet components can suppress inflammation and reduce cancer risk. Nutr Res Pract 8(3):233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy DS et al (2020) Ancestry specific associations of FTO gene variant and metabolic syndrome: a longitudinal ARIC study. Medicine 99(6)

    Google Scholar 

  • Hass BS et al (1993) Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat Res 295(4–6):281–289

    Article  CAS  PubMed  Google Scholar 

  • Hawkinson AK (2007) Nutrigenomics and nutrigenetics in whole food nutritional medicine. Townsend Lett Exam Altern Med 283:102–104

    Google Scholar 

  • He F-J, Chen J-Q (2013) Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: differences between Chinese women and women in Western countries and possible mechanisms. Food Sci Human Wellness 2(3–4):146–161

    Article  Google Scholar 

  • Hoffmann TJ et al (2011) Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics 98(2):79–89

    Article  CAS  PubMed  Google Scholar 

  • Hua X et al (2016) Association among dietary flavonoids, flavonoid subclasses and ovarian cancer risk: a meta-analysis. PLoS One 11(3):e0151134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer-epigenetics comes of age. Nat Genet 21(2):163–167

    Article  CAS  PubMed  Google Scholar 

  • Kaput J et al (2007) Application of nutrigenomic concepts to type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 17(2):89–103

    Article  CAS  PubMed  Google Scholar 

  • Kaur K, Allahbadia G, Singh M (2018) Impact of nutrigenomics on various metabolic disorders in relation to life style alteration. Austin J Nutri Food Sci 6(1):1100

    Google Scholar 

  • Kikuno N et al (2008) Genistein mediated histone acetylation and demethylation activate tumor suppressor genes in prostate cancer. J Urol 179(4S):45–45

    Article  Google Scholar 

  • Kim GT, Lee SH, Kim YM (2013) Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells. J Cancer Prev 18(3):264

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohlmeier M (2012) Nutrigenetics: applying the science of personal nutrition. Academic Press

    Google Scholar 

  • Konstantinidou V et al (2010) In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J 24(7):2546–2557

    Article  CAS  PubMed  Google Scholar 

  • Kühn AB et al (2016) FTO gene variant modulates the neural correlates of visual food perception. NeuroImage 128:21–31

    Article  PubMed  CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12):3479S–3485S

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2019) Apolipoprotein E gene polymorphism and the risk of cardiovascular disease and type 2 diabetes. BMC Cardiovasc Disord 19(1):1–6

    Article  Google Scholar 

  • Martins I et al (2006) Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatry 11(8):721–736

    Article  CAS  PubMed  Google Scholar 

  • Mazo DF et al (2019) Validation of PNPLA3 polymorphisms as risk factor for NAFLD and liver fibrosis in an admixed population. Ann Hepatol 18(3):466–471

    Article  CAS  PubMed  Google Scholar 

  • Medina-Gomez C et al (2015) Challenges in conducting genome-wide association studies in highly admixed multi-ethnic populations: the Generation R Study. Eur J Epidemiol 30(4):317–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Meeran SM et al (2011) A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells. Cancer Prev Res 4(8):1243–1254

    Article  CAS  Google Scholar 

  • Micha R et al (2017) Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA 317(9):912–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Miggiano G, De Sanctis R (2006) Nutritional genomics: toward a personalized diet. Clin Ter 157(4):355–361

    CAS  PubMed  Google Scholar 

  • Milagro F et al (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Asp Med 34(4):782–812

    Article  CAS  Google Scholar 

  • Milenkovic D et al (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One 7(1):e29837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller M, Kersten S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4(4):315–322

    Article  PubMed  CAS  Google Scholar 

  • Mullins VA et al (2020) Genomics in personalized nutrition: can you “eat for your genes”? Nutrients 12(10):3118

    Article  CAS  PubMed Central  Google Scholar 

  • Nandakumar V, Vaid M, Katiyar SK (2011) (−)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p 16 INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32(4):537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehlig A (2018) Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev 70(2):384–411

    Article  CAS  PubMed  Google Scholar 

  • Nelson MR et al (2004) Large-scale validation of single nucleotide polymorphisms in gene regions. Genome Res 14(8):1664–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omene C et al (2013) Propolis and its active component, caffeic acid phenethyl ester (CAPE), modulate breast cancer therapeutic targets via an epigenetically mediated mechanism of action. J Cancer Sci Ther 5(10):334

    PubMed  PubMed Central  Google Scholar 

  • Ozturk G et al (2012) The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci 16(15):2064–2068

    CAS  PubMed  Google Scholar 

  • Paredes-Gonzalez X et al (2014) Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P+ cells through epigenetics modifications. AAPS J 16(4):727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peregrin T (2001) The new frontier of nutrition science: nutrigenomics. J Acad Nutr Diet 101(11):1306

    CAS  Google Scholar 

  • Petric RC et al (2015) Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther 8:2053

    Article  CAS  Google Scholar 

  • Piroddi M et al (2017) Nutrigenomics of extra-virgin olive oil: a review. Biofactors 43(1):17–41

    Article  CAS  PubMed  Google Scholar 

  • Qian F et al (2019) Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med 179(10):1335–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Reen JK, Yadav AK, Singh J (2015) Nutrigenomics: concept, advances and applications. Asian J Dairy Food Res 34(3):205–212

    Article  Google Scholar 

  • Remely M et al (2015a) Nutriepigenomics: the role of nutrition in epigenetic control of human diseases. Curr Opin Clin Nutr Metab Care 18(4):328–333

    Article  CAS  PubMed  Google Scholar 

  • Remely M et al (2015b) Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 172(11):2756–2768

    Article  CAS  PubMed  Google Scholar 

  • Sachse C et al (2003) Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 55(1):68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzberg SL (2018) Open questions: how many genes do we have? BMC Biol 16(1):1–3

    Article  CAS  Google Scholar 

  • Satija A, Hu FB (2018) Plant-based diets and cardiovascular health. Trends Cardiovasc Med 28(7):437–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu L et al (2011) Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPS J 13(4):606–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shungin D et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518(7538):187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AN, Baruah MM, Sharma N (2017) Structure based docking studies towards exploring potential anti-androgen activity of selected phytochemicals against prostate cancer. Sci Rep 7(1):1–8

    CAS  Google Scholar 

  • Stover PJ, Garza C (2002) Bringing individuality to public health recommendations. J Nutr 132(8):2476S–2480S

    Article  CAS  PubMed  Google Scholar 

  • Tolba MF et al (2013) Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life 65(8):716–729

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay S, Dixit M (2015) Role of polyphenols and other phytochemicals on molecular signaling. Oxidative Med Cell Longev 2015

    Google Scholar 

  • Vardi A et al (2010) Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo 24(4):393–400

    CAS  PubMed  Google Scholar 

  • Waltenberger B et al (2016) Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 21(6):807

    Article  PubMed Central  CAS  Google Scholar 

  • Weng C-J, Yen G-C (2012) Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev 38(1):76–87

    Article  CAS  PubMed  Google Scholar 

  • Wubetu GY et al (2016) Epigallocatechin gallate hinders human hepatoma and colon cancer sphere formation. J Gastroenterol Hepatol 31(1):256–264

    Article  CAS  PubMed  Google Scholar 

  • Yang Y et al (2007) Effect of apolipoprotein E genotype and saturated fat intake on plasma lipids and myocardial infarction in the Central Valley of Costa Rica. Hum Biol 79(6):637–647

    Article  PubMed  Google Scholar 

  • Yates Z, Lucock M (2003) Interaction between common folate polymorphisms and B-vitamin nutritional status modulates homocysteine and risk for a thrombotic event. Mol Genet Metab 79(3):201–213

    Article  CAS  PubMed  Google Scholar 

  • Yi SV, Goodisman MA (2021) The impact of epigenetic information on genome evolution. Philos Trans R Soc B 376(1826):20200114

    Article  CAS  Google Scholar 

  • Yoo J-H, Park S-C (2000) Low plasma folate in combination with the 677 C→ T methylenetetrahydrofolate reductase polymorphism is associated with increased risk of coronary artery disease in Koreans. Thromb Res 97(2):77–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang N (2015) Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim Nutr 1(3):144–151

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duaa Dakhlallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salama, S.A., Dakhlallah, D. (2022). Gene-Gut-Brain Axis: Gene-Based Personalized Medicine. In: Salama, M. (eds) Nutrigenomics and the Brain. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-16-9205-5_3

Download citation

Publish with us

Policies and ethics