Skip to main content

Computational Biology in the Lens of CNN

  • Chapter
  • First Online:
Handbook of Machine Learning Applications for Genomics

Part of the book series: Studies in Big Data ((SBD,volume 103))

Abstract

Throughout this chapter the objective is to bring deep learning techniques and algorithms, specifically CNN, which bring about ease for a researcher with respect to time and resources. The concepts are explained as an overview to implant an intuition of the techniques which can be further elaborated with the mathematics in the references. Computational biology involves the examination of how proteins interact with each other through the simulation of protein folding, motion, and interaction. Current computational biology research can be divided into a number of broad areas, mainly based on the type of experimental data that is analyzed or modeled. Deep learning and in particular, Convolutional Neural Networks (CNNs) has brought about a revolution for the analysis of gene expression images. This technique solves some of the setbacks faced by traditional machine learning approaches while advances in technology have enabled the capture of gene sequence images, while in some cases non-image data captured can be converted to an image for analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adate, A., Tripathy, B.K.: Deep learning techniques for image processing. In: Machine Learning for Big Data Analysis Berlin, pp. 69–90. De Gruyter, Boston (2018)

    Chapter  Google Scholar 

  2. Bose, A., Tripathy, B.K.: Deep learning for audio signal classification. In: Deep Learning Research and Applications, pp. 105–136. De Gruyter Publications (2020)

    Google Scholar 

  3. Garg, N., Nikhitha, P., Tripathy, B.K.: Image retrieval using latent feature learning by deep architecture. In: Proceedings of IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–4. (2014)

    Google Scholar 

  4. Prakash, V., Tripathy, B.K.: Recent advancements in automatic sign language recognition (SLR). In: Computational Intelligence for Human Action Recognition, pp. 1–24. CRC Press (2020)

    Google Scholar 

  5. Singhania, U., Tripathy, B.K.: Text-based image retrieval using deep learning. In: Encyclopedia of Information Science and Technology, 5th edn., pp. 87–97. IGI Global, USA (2020)

    Google Scholar 

  6. Baktha, K., Tripathy, B.K.: Investigation of recurrent neural networks in the field of sentiment analysis. In: Proceedings of IEEE International Conference on Communication and Signal Processing, pp. 2047–2050. (2017)

    Google Scholar 

  7. Adate, A., Tripathy, B.K., Arya, D., Shaha, A.: Impact of deep neural learning on artificial intelligence research. In: Deep Learning Research and Applications, vol. 7, pp. 69–84. De Gruyter Publications (2020)

    Google Scholar 

  8. Adate, A., Tripathy, B.K.: S-lstm-gan: shared recurrent neural networks with adversarial training. In: Proceedings of the 2nd International Conference on Data Engineering and Communication Technology, pp. 107–115. Springer, Singapore (2019)

    Google Scholar 

  9. Adate, A., Tripathy, B.K. Understanding single image super resolution techniques with generative adversarial networks. In: Advances in Intelligent Systems and Computing, vol. 816, pp. 833–840. Springer, Singapore (2019)

    Google Scholar 

  10. Maheshwari, K., Shaha, A., Arya, D., Rajasekaran, R., Tripathy, B.K.: Convolutional neural networks: a bottom-up approach. Deep Learn. Res. Appl. 7, 21–50 (2019)

    Google Scholar 

  11. Debgupta, R., Chaudhuri, B.B., Tripathy, B.K. A wide ResNet-based approach for age and gender estimation in face images. In: Proceedings of International Conference on Innovative Computing and Communications, pp. 517–530. Springer, Singapore (2020)

    Google Scholar 

  12. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16, 321–332 (2015)

    Article  Google Scholar 

  13. Kell, D.B.: Metabolomics, machine learning and modeling: towards an understanding of the language of cells. Biochem. Soc. Trans. 33, 520–524 (2005)

    Article  Google Scholar 

  14. Fritscher, K., Raudaschl, P., Zaffino, P., Spadea, M.F., Sharp, G.C., Schubert, R.: Deep neural networks for fast segmentation of 3D medical images. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 158–165. (2016)

    Google Scholar 

  15. Swan, A.L., Mobasheri, A., Allaway, D., Liddell, S., Bacardit, J.: Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. OMICS 17(12), 595–610 (2013)

    Article  Google Scholar 

  16. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Montavon, G., Orr, G., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, pp. 437–478. Springer, Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  17. Angermueller, C., Pärnamaa, T., Parts, L., Stegle, O.: Deep learning for computational biology. Mol. Syst. Biol. 12(7), 878 (2016). https://doi.org/10.15252/msb.20156651

    Article  Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2818–2826 (2016)

    Google Scholar 

  20. Li, S.Z.: Markov random field modeling in image analysis. Springer Science & Business Media, Berlin, Heidelberg (2009)

    Google Scholar 

  21. Dahl, G.E., Jaitly, N., Salakhutdinov, R.: Multi‐task neural networks for QSAR predictions (2014). arXiv:1406.1231

  22. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27, 83–85 (2005)

    Google Scholar 

  23. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3156–3164 (2015)

    Google Scholar 

  24. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)

    Article  Google Scholar 

  25. Sønderby, S.K., Winther, O.: Protein secondary structure prediction with long short term memory networks (2014). arXiv:1412.7828

  26. Stormo, G.D., Schneider, T.D., Gold, L., Ehrenfeucht, A.: Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res. 10(9), 2997–3011 (1982)

    Google Scholar 

  27. Hill, J.T., Demarest, B.L., Bisgrove, B.W., Gorsi, B., Su, Y.C., Yost, H.J.: MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 23(4), 687–697 (2013). https://doi.org/10.1101/gr.146936.112

    Article  Google Scholar 

  28. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12(10), 931–934 (2015)

    Article  Google Scholar 

  29. Kelley, D.R., Snoek, J., Rinn, J.L.: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26(7), 990–999 (2016). https://doi.org/10.1101/gr.200535.115

    Article  Google Scholar 

  30. Angermueller, C., Lee, H., Reik, W., Stegle, O.: Accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18(1), 1–13 (2016). https://doi.org/10.1101/055715

    Article  Google Scholar 

  31. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning (2015). arXiv:1506.00019

  32. Agathocleous, M., Christodoulou, G., Promponas, V., Christodoulou, C., Vassiliades, V., Antoniou, A.: Protein secondary structure prediction with bidirectional recurrent neural nets: can weight updating for each residue enhance performance? In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) Artificial Intelligence Applications and Innovations, vol. 339, pp. 128–137. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large‐scale image recognition (2014). arXiv:1409.1556

  34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). arXiv:1512.03385

  35. Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.Z.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2017). https://doi.org/10.1109/JBHI.2016.2636665

    Article  Google Scholar 

  36. Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  37. Avendi, M., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  38. Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.: Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Process. 14, 1360–1371 (2005)

    Article  Google Scholar 

  39. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  40. Havaei, M., Guizard, N., Larochelle, H., Jodoin, P.: Deep learning trends for focal brain pathology segmentation in MRI. In: Machine Learning for Health Informatics, pp. 125–148. Springer, Cham (2016). abs/1607.052582016

    Google Scholar 

  41. Mansoor, A., Cerrolaza, J.J., Idrees, R., Biggs, E., Alsharid, M.A., Avery, R.A., Linguraru, M.G.: Deep learning guided partitioned shape model for anterior visual pathway segmentation. IEEE Trans. Med. Imaging 35(8), 1856–1865 (2016)

    Article  Google Scholar 

  42. Ghesu, F.C., Krubasik, E., Georgescu, B., Singh, V., Zheng, Y., Hornegger, J., Comaniciu, D.: Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. Imaging 35(5), 1217–1228 (2016)

    Article  Google Scholar 

  43. Biswas, R., Vasan, A., Roy, S.S.: Dilated Deep Neural network for segmentation of retinal blood vessels in fundus images. Iran. J. Sci. Technol. Trans. Electr. Eng. 1–14 (2019)

    Google Scholar 

  44. Mostavi, M., Chiu, Y.C., Huang, Y., Chen, Y.: Convolutional neural network models for cancer type prediction based on gene expression. BMC Med. Genom. 13, 1–13 (2020)

    Article  Google Scholar 

  45. Liu, J., Wang, X., Cheng, Y., Zhang, L.: Tumor gene expression data classification via sample expansion-based deep learning. Oncotarget 8(65), 109646 (2017)

    Google Scholar 

  46. Huynh, P.H., Nguyen, V.H., Do, T.N.: Novel hybrid DCNN–SVM model for classifying RNA-sequencing gene expression data. J. Inf. Telecommun. 3(4), 533–547 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.K. Tripathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, P., Guhan, T., Tripathy, B. (2022). Computational Biology in the Lens of CNN. In: Roy, S.S., Taguchi, YH. (eds) Handbook of Machine Learning Applications for Genomics. Studies in Big Data, vol 103. Springer, Singapore. https://doi.org/10.1007/978-981-16-9158-4_5

Download citation

Publish with us

Policies and ethics