Skip to main content

Radiation-Resilient GaN/InxGa1-xN Multi-junction Solar Cells with Varying in Contents

  • Conference paper
  • First Online:
Proceedings of the 3rd International Conference on Communication, Devices and Computing (ICCDC 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 851))

Included in the following conference series:

Abstract

This present work reports development of an analytical model for InGaN/GaN multi-junction solar cells having to vary in contents validated with numerical simulation results using Sentaurus TCAD. The performance of the solar cells is optimized with reference to various Mg doping concentrations in the cap layer and in the content of the two layers acting as the active region of the solar cell. Results obtained from our model show an excellent concordance with the simulation data and also limited experimental data reported elsewhere. The simulation study reveals that the optimum Mg doping density is 1019 cm−3 which balances between the front surface recombination phenomena and the extraction of electron–hole pair at the two ends. The obtained results show that the proposed solar cell yields a peak power conversion efficiency of 2.87%, a fill-factor of 64%, a short-circuit current density of 6.60 mA-cm−2, and an open-circuit voltage of 0.68 V. Most importantly, our optimized solar cell yields 70% improvement in power conversion efficiency in comparison with the conventional structure at AM1.5 solar irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deldago, R.-L., Valenzuela, Raynaud, A.-Z., Carraczco, A.-R., Pelayo, J.-E., Mendoza, D.-B., Ramos, M.-E.-A., Ayon, A.: Solar cell efficiency improvement employing down-shifting silicon quantum dots. Microsyst. Technol. 24, 495 (2017)

    Google Scholar 

  2. Nath, P., Biswas, A., Nath, V.: Performance optimization of solar cells using non-polar, semi-polar and polar InGaN/GaN multiple quantum wells alongside AlGaN blocking layers. Microsyst. Technol. 301–306 (2020)

    Google Scholar 

  3. Bhuiyan, A.-G., Sugita, K., Hashimoto, A., Yamamoto, A.: InGaN solar cells: present state of the art and important challenges. IEEE J. Photovolt. 276–293 (2012)

    Google Scholar 

  4. Tsai, C.-T., Muna, Y.-B., Kuo, C.-C.: Optimal design and performance analysis of solar microsystem for mini-grid applications. Microsyst. Technol. 69 (2018)

    Google Scholar 

  5. Deldago, R.-L., Valenzuela, R.-A.-Z., Carraczco, A.-R., Pelayo, J.-E., Mendoza, D.-B., Ramos, M.-E.-A., Ayon, A.: Solar cell efficiency improvement employing down-shifting silicon quantum dots. Microsyst. Technol. 24, 495 (2017)

    Google Scholar 

  6. Kirubaray, A.-A., Moni, D.-J., Devaprakasam, D.: Large scale fabrication of asymmetric 2D and 3D micro/nano array pattern structures using multi-beam interference lithography technique for solar cell texturing application. Microsyst. Technol. 24, 2569 (2018)

    Article  Google Scholar 

  7. Sayed, I., Bedair, S.-M.: Quantum well solar cells: principles, recent progress, and potential. IEEE J. Photovolt. 402–423 (2019)

    Google Scholar 

  8. Siddharth, G., Garg, V., Sengar, B.-S., Bhardwaj, R., Kumar, P., Mukherjee, S.: Analytical study of performance parameters of InGaN/GaN multiple quantum well solar cell. IEEE Trans. Electron Devices. 3399–3404 (2019)

    Google Scholar 

  9. Kotamraju, S., Sukeerthi, M., Puthanveettil, S.-E.: Modeling of InGaP/InGaAs-GaAsP/Ge multiple quantum well solar cell to improve efficiency for space applications. Sol. Energy. 328–334 (2019)

    Google Scholar 

  10. Kucukgok, B., Wu, X., Wang, X., Liu, Z., Ferguson, I.-T., Lu, N.: The structural properties of InGaN alloys and the interdependence on the thermoelectric behaviour. Appl. Phys. Lett. 6, 025305 (2016)

    Google Scholar 

  11. Wang, J., Higashihara, C.-L., Chen, W.-C.: All-conjugated donor-acceptor graft/block copolymers as single active components and surfactants in all-polymer solar cells. Microsyst. Technol. 23, 1183 (2017)

    Google Scholar 

  12. Chen, X., Matthews, K.-D., Hao, D., Schaff, W.-J., Eastman, L.-F.: Growth, fabrication, and characterization of InGaN solar cells. Phys. Stat. Sol. (A) 1103–1105 (2008)

    Google Scholar 

  13. Bandic, Z.-Z., Bridger, P.-M. , Piquette, E.-C., McGillb, T.C.: Electron diffusion length and lifetime in p-type GaN. Appl. Phys. Lett. 73, 3276 (1998)

    Google Scholar 

  14. Kuwahara, Y., Fujii, T., Sugiyama, T., Iida, D., Isobe, Y., Fujiyama, Y., Morita, Y., Iwaya, M., Takeuchi, T., Kamiyama, S., Akasaki, I., Amano, H.: GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate. Appl. Phys. Exp. 4, 021001 (2011)

    Google Scholar 

  15. Fonash, S.J.: Solar cell device physics, 2nd ed. Anderson, L.L., Tillman, D.A. (eds.) Academic Press, New York, London, Toronto, Sydney, San Francisco (2009)

    Google Scholar 

  16. Matioli, E., Neufeld, C., Iza, M., Cruz, S.-C., Heji, A.-A., Chen, X., Farrell, R.-M., Keller, S., DenBaars, S., Mishra, U., Nakamura, S., Speck, J., Weisbuch, C.: High internal and external quantum efficiency InGaN/GaN solar cells. Appl. Phys. Lett. 98, 021102 (2011)

    Google Scholar 

  17. Muth, J.-F., Lee, J.-H., Shmagin, I.-K. Kolbas, R.-M., Casey, H.-C. , Keller, B.-P., Mishra, U.-K., DenBaars, S.-P.: Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71, 2572 (1997)

    Google Scholar 

  18. Huang, X., Chen, H., Fu, H., Baranowski, I., Montes, J., Yang, T.-H, Fu, K., Gunning, B., Koleske, P.-D., Zhao, Y.: Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress. Appl. Phys. Lett. 111, 233511 (2017)

    Google Scholar 

  19. Young, N.-G., Farrell, R-.M., Hu, Y.-L., Terao, Y., Iza, M., Keller, S., DenBaars, S.-P., Nakamura, S., Speck, J.-S.: High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates. Appl. Phys. Lett. 103, 173903 (2013)

    Google Scholar 

  20. Bi, Z., Zhang, J., Zheng, Q., Zhiyu, L., Lin, L., Shan, H., Peixian, L., Xiaohua, M., Yiping, H., Hao, Y.: An InGaN based solar cell including dual InGaN/GaN multiple quantum wells. IEEE J. Photovolt. 2117–2120 (2016)

    Google Scholar 

  21. Huang, X., Chen, H., Fu, H., Baranowski, I., Montes, J., Yang, T.-H, Fu, K., Gunning, B.P.-D., Koleske, Zhao, Y. : Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers. Appl. Phys. Lett. 113, 043501 (2018)

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges the “UNIVERSITY RESEARCH FELLOWSHIP” program under the University of Calcutta for providing financial support for University Research Fellow (URF) vide Ref. No. DPO/44/Fellow (University) dtd. 12.02.2021.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pramita, N., Abhijit, B. (2022). Radiation-Resilient GaN/InxGa1-xN Multi-junction Solar Cells with Varying in Contents. In: Sikdar, B., Prasad Maity, S., Samanta, J., Roy, A. (eds) Proceedings of the 3rd International Conference on Communication, Devices and Computing. ICCDC 2021. Lecture Notes in Electrical Engineering, vol 851. Springer, Singapore. https://doi.org/10.1007/978-981-16-9154-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9154-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9153-9

  • Online ISBN: 978-981-16-9154-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics