Skip to main content
  • 230 Accesses

Abstract

In today’s rapidly developing world of science and technology, the field of materials science is tremendously changing; new theoretical concepts, ideas, and technologies continue to emerge, and preparation of composites is a new trend. Composites are new materials obtained by optimizing the combination of two or more materials of completely different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohammad Sharifi E, Karimzadeh F, Enayati MH. Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Mater Des; 2011;32(6):3263–71.

    Google Scholar 

  2. Li Y, Zhao YH, Ortalan V, et al. Investigation of aluminum-based nanocomposites with ultra-high strength. Mater Sci Eng, A. 2009;527(1–2):305–16.

    Article  Google Scholar 

  3. Louzguine-Luzgin DV, Inoue A. Investigation of a rapidly solidified Al-based nanocomposite with extremely high number density of precipitates. Mater Sci Eng, A. 2007;449–451:1026–8.

    Article  Google Scholar 

  4. Witkin DB, Lavernia EJ. Synthesis and mechanical behavior of nanostructured materials via cryo-milling. Prog Mater Sci. 2006;51(1):1–60.

    Article  CAS  Google Scholar 

  5. Emamy M, Mahta M, Rasizadeh J. Formation of TiB2 particles during dissolution of TiAl3 in Al-TiB2 metal matrix composite using an in-situ technique. Compos Sci Technol. 2006;66(7–8):1063–6.

    Article  CAS  Google Scholar 

  6. Merzhanov AG, Shkiro VM, Borovinskaya I. Method of producing refractory carbides, borides, silicides, sulfides, andnitrides of metals of groups iv, v, and vi of the periodic system, US3726643A; 1973.

    Google Scholar 

  7. Christodoulou L, Nagle DC, Brupbacher JM. Process for forming metal-second phase composites and product thereof, US4751048A; 1988.

    Google Scholar 

  8. Mitra R, Chiou WA, Fine ME, et al. Interfaces in as-extruded XD Al/TiC and Al/TiB2 metal matrix composites. J Mater Res. 1993;8(9):2380–92.

    Article  CAS  Google Scholar 

  9. Murthy VSR, Rao BS. Microstructural development in the directed melt-oxidized (DIMOX) Al-Mg-Si alloys. J Mater Sci. 1995;30(12):3091–7.

    Article  CAS  Google Scholar 

  10. Premkumar MK, Chu MG. Synthesis of TiC particulates and their segregation during solidification in in-situ processed Al-TiC composites. Metall Trans A. 1993;24(10):2358–62.

    Article  Google Scholar 

  11. Aghajanian MK, MacMillan NH, Kennedy CR, et al. Properties and microstructure of LanxideTM Al2O3-Al ceramic composite materials. J Mater Sci. 1989;24(2):658–70.

    Article  CAS  Google Scholar 

  12. Dhandapani SP, Jayaram V, Surappa MK. Growth and microstructure of Al2O3-SiC-Si(Al) composites prepared byreactive infiltration of silicon carbide preforms. Acta Metall Mater. 1994;42(3):649–56.

    Article  CAS  Google Scholar 

  13. Newkirk MS, Urquhart AW, Zwicker HR, et al. Formation of LanxideTM ceramic composite materials. J Mater Res. 1986;1(1):81–9.

    Article  CAS  Google Scholar 

  14. Hunt M. Automotive MMCs: better and cheaper. Mater Sci Eng A. 1989;10:45–8.

    Google Scholar 

  15. Davies P, Kellie JLF, Wood JV. UK Patent 2257985A; 1992.

    Google Scholar 

  16. Wood JV, Davies P, Kellie JLF. Properties of the reactively cast aluminium-TiB2 alloys. Mater Sci Technol. 1993;9(10):833–40.

    Article  CAS  Google Scholar 

  17. Davies P, Kellie JLF, Wood JV. Development of cast aluminium metal matrix composites. Key Eng Mater. 1993;77–78:357–62.

    Google Scholar 

  18. Koczak M. Reactive processing of MMC. In: Proceeding of TMS; 1993; p. 223–30.

    Google Scholar 

  19. Nakata H, Choh T, Kanetake N. Fabrication and mechanical properties of in-situ formed carbide particulate reinforced aluminium composite. J Mater Sci. 1995;30(7):1719–27.

    Article  CAS  Google Scholar 

  20. Tjong SC, Wang GS, Mai YW. High cycle fatigue response of in-situ Al-based composites containing TiB2 and Al2O3 submicron particles. Compos Sci Technol. 2005;65(10):1537–46.

    Article  CAS  Google Scholar 

  21. Yang B, Wang F, Huang ZJ, et al. The development of spray deposition forming particle reinforced metal matrix composite preparation technology. Material Guide. 2005;15(3):4–9 (in Chinese).

    Google Scholar 

  22. Zhao YT, Zhang SL, Chen G, et al. In-situ (Al2O3+Al3Zr) np/Al nanocomposites synthesized by magneto-chemical melt reaction. Compos Sci Technol. 2008;68(6):1463–70.

    Article  CAS  Google Scholar 

  23. Ladeveze P, Nouy A, Loiseau O. A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng. 2002;191(43):4869–91.

    Article  Google Scholar 

  24. Louzguine G, Luzgin DV, Inoue A. Investigation of a rapidly solidified Al-based nanocomposite with extremely high number density of precipitates. Mater Sci Eng A. 2007;449(13):1026–1028.

    Google Scholar 

  25. Nakae H, Wu S. Engulfment of Al2O3 particles during solidification of aluminum matrix composites. Mater Sci Eng, A. 1998;252(2):232–8.

    Article  Google Scholar 

  26. Uhlmann DR, Chalmers B, Jackson KA. Interaction between particles and a solid-liquid interface. J Appl Phys. 1964;35(10):2986–93.

    Article  CAS  Google Scholar 

  27. Heinrich H, Vananti A, Kostorz G. Stress fields near interfaces of aluminium-based metal-matrix composites. Philosophical Magazine Part A. 2002;82(11):2269–85.

    Article  CAS  Google Scholar 

  28. Scudino S, Liu G, Sakaliyska M, et al. Powder metallurgy of Al-based MMCs reinforced with β-Al3Mg2 intermetallic particles: analysis and modeling of mechanical properties. Acta Mater. 2009;57(15):4529–38.

    Article  CAS  Google Scholar 

  29. Li Y, Zhang Z, Vogt R, et al. Boundaries and interfaces in ultrafine grain composites. Acta Mater. 2011;59(19):7206–18.

    Article  CAS  Google Scholar 

  30. Bai PC, Dai XJ, Zhao CW, et al. The interface structure characteristics of Al2O3/Al composites. J Compos Mater. 2008;25(1):88–93 (in Chinese).

    CAS  Google Scholar 

  31. Xia SM, Qi Y, Perry T, et al. Strength characterization of Al/Si interfaces: a hybrid method of nano-indentation and finite element analysis. Acta Mater. 2009;57(3):695–707.

    Article  CAS  Google Scholar 

  32. Ouyang QB, Zhang GD, Zhang D. Research and application progress of discontinuously reinforced aluminum matrix composites. China Materials Progress. 2010;29(4):36–40 (in Chinese).

    Google Scholar 

  33. Wang HM, Li GR, Zhao YT, et al. Microstructure, billet surface quality and tensile property of (Al2O3 + Al3Zr)p/Al composites in-situ synthesized with electromagnetic field. J Alloy Compd. 2011;509(18):5696–700.

    Article  CAS  Google Scholar 

  34. Onat A. Mechanical and dry sliding wear properties of silicon carbide particulate reinforced alumininm-copper alloy miatrix composites produced by direct squeeze casting method. J Alloy Compd. 2010;489(1):119–24.

    Article  CAS  Google Scholar 

  35. Du SY. Advanced composite materials and aerospace. J Compos Mater. 2007;24(1):1–12 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutao Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, Y. (2022). Introduction. In: In-Situ Synthesis of Aluminum Matrix Composites. Springer, Singapore. https://doi.org/10.1007/978-981-16-9120-1_1

Download citation

Publish with us

Policies and ethics