Skip to main content

Application of Frequency Modulated Thermal Wave Imaging for Bone Diagnostics

  • 71 Accesses

Part of the Lecture Notes in Mechanical Engineering book series (LNME)


In recent years, non-invasive imaging methodologies have been demonstrated as reliable, quantitative and remote inspection methods for the characterization of biological samples. The present work incorporates frequency modulated thermal wave imaging (FMTWI) followed by matched filtering-based post-processing analysis for bone diagnostics, especially bone with tissue, skin and muscle over layers. In order to find the characterization capabilities of the proposed method to detect the bone density variations, a multilayer skin-fat-muscle-bone structure is considered. The results obtained from the proposed scheme clearly show improved evaluation capabilities in terms of the test resolution and sensitivity.


  • Frequency modulated thermal wave imaging
  • Nondestructive testing
  • Osteoporosis
  • Finite element analysis

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-9093-8_28
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-9093-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Yang TL, Shen H, Liu A, Dong SS, Zhang L, Deng FY, Zhao Q, Deng HW (2019) A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 16(2):1–13.

    CrossRef  Google Scholar 

  2. Lorentzon M (2019) Treating osteoporosis to prevent fractures: current concepts and future developments. J Intern Med 285(4):381–394.

    CrossRef  Google Scholar 

  3. Adams AL, Fischer H, Kopperdahl DL, Lee DC, Black DM, Bouxsein ML, Fatemi S, Khosla S, Orwoll ES, Siris ES, Keaveny TM (2018) Osteoporosis and hip fracture risk from routine computed tomography scans: the fracture, osteoporosis, and CT utilization study (FOCUS). J Bone Miner Res 33(7):1291–1301.

    CrossRef  Google Scholar 

  4. Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C (2020) The epidemiology of osteoporosis. Br Med Bull 133(1):105–117.

    CrossRef  Google Scholar 

  5. Anouti FAL, Taha Z, Shamim S, Khalaf K, Kaabi AL, Alsafar H (2019) An insight into the paradigms of osteoporosis: from genetics to biomechanics. Bone Reports 11:100216.

  6. Pinheiro MB, Oliveira J, Bauman A, Fairhall N, Kwok W, Sherrington C (2020) Evidence on physical activity and osteoporosis prevention for people aged 65+ years: a systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int J Behav Nutr Phys Act 17(1):1–53.

    CrossRef  Google Scholar 

  7. Harvey N, Dennison E, Cooper C (2010) Osteoporosis: impact on health and economics. Nat Rev Rheumatol 6(2):99–105.

    CrossRef  Google Scholar 

  8. Wahl DA, Cooper C, Ebeling PR, Eggersdorfer M, Hilger J, Hoffmann K, Josse R, Kanis JA, Mithal A, Pierroz DD, Stenmark J, Stӧcklin E, Dawson-Hughes B (2012) A global representation of vitamin D status in healthy populations. Arch Osteoporos 7(1):155–172.

    CrossRef  Google Scholar 

  9. Sharma A, Mulaveesala R, Arora V (2020) Novel analytical approach for estimation of thermal diffusivity and effusivity for detection of osteoporosis. IEEE Sens J.

    CrossRef  Google Scholar 

  10. Sharma A, Mulaveesala R, Dua G, Kumar N (2020) Linear frequency modulated thermal wave imaging for estimation of osteoporosis: an analytical approach. Electron Lett.

    CrossRef  Google Scholar 

  11. Arora V, Siddiqui JA, Mulaveesala R, Muniyappa A (2014) Pulse compression approach to nonstationary infrared thermal wave imaging for nondestructive testing of carbon fiber reinforced polymers. IEEE Sens J 15(2):663–664.

    CrossRef  Google Scholar 

  12. Mulaveesala R, Dua G, Arora V, Siddiqui JA, Muniyappa A (2017) Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials. Thermosense: thermal infrared applications XXXIX. Int Soc Optics Photon 10214:102140G.

  13. Mulaveesala R, Dua G (2016) Non-invasive and non-ionizing depth resolved infra-red imaging for detection and evaluation of breast cancer: a numerical study. Biomed Phys Eng Express 2(5):055004.

  14. Werner J, Buse M (1988) Temperature profiles with respect to inhomogeneity and geometry of the human body. J Appl Physiol 65(3):1110–1118.

  15. Williams LR, Leggett RW (1989) Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas 10(3):187–217.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anshul Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Indian Society for Non-destructive Testing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Rani, A., Mulaveesala, R. (2022). Application of Frequency Modulated Thermal Wave Imaging for Bone Diagnostics. In: Mandayam, S., Sagar, S.P. (eds) Advances in Non Destructive Evaluation. Lecture Notes in Mechanical Engineering. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9092-1

  • Online ISBN: 978-981-16-9093-8

  • eBook Packages: EngineeringEngineering (R0)