Skip to main content

Innate Immunity Via Glycan-Binding Lectin Receptors

  • Chapter
  • First Online:
Glycobiology of Innate Immunology
  • 897 Accesses

Abstract

Recognition of glycans and transfer of information contained in the glycan structures are performed by carbohydrate-recognizing proteins of lectins or GAG-recognizing proteins. Lectins bind to N-glycans, O-glycans, and GSLs, while GAG-binding proteins easily bind sulfated GAGs. Lectin receptors are innate immune receptors and include Siglec, C-type lectin, galectin, DC-SIGN, and TLRs in DCs during pathogenic infection and immune tolerogenic homeostasis. The CTL roles are to directly recognize invaders of microbes and also contribute to opsonic effect via activation of complement pathways. Innate immune cells survey their habitat to recognize pathogens by means of PRRs, where PRRs selectively bind PAMPs. PAMPs are heterogeneous and homogeneous mannose oligomers and polymers, β-glucans, and chitins in the fungi surface as well as carbohydrate moieties including GlcNAc derivatives in bacteria. Innate immunity system represents our first host defense line where the innate pattern recognition receptors/molecules (PRRs/PRMs) encounter, recognize, and bind conserved motifs of microbial invaders or PAMPs. Therefore, the PRRs/PRMs function as the initiator of innate immunity to microbial invaders. Upon interaction with their invading pattern molecules as ligands, PRRs/PRMs enter into signal transduction pathways and activate diverse downstream kinases and transcription factors to lead to inflammatory response and immune responses, depending on defense circumstances. For example, LPS, CpG DNA, dsRNA, ssRNA, rRNA, or pathogenic surface glycans bind TLR4, TLR9, TLR3, TLR7/TLR8, or TLR13 to elicit expression of cytokines of type I IFN/TNF-α/IL-6, which are inflammatory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabinovich GA, Croci DO. Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity. 2012;36(3):322–35.

    CAS  PubMed  Google Scholar 

  2. Gornik O, Lauc G. Glycosylation of serum proteins in inflammatory diseases. Dis Markers. 2008;25(4–5):267–78.

    CAS  PubMed  Google Scholar 

  3. Lauc G, Huffman JE, Pučić M, Zgaga L, Adamczyk B, Mužinić A, Novokmet M, Polašek O, Gornik O, Krištić J, Keser T, Vitart V, Scheijen B, Uh HW, Molokhia M, Patrick AL, McKeigue P, Kolčić I, Lukić IK, Swann O, van Leeuwen FN, Ruhaak LR, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, de Craen AJ, Deelder AM, Zeng Q, Wang W, Hastie ND, Gyllensten U, Wilson JF, Wuhrer M, Wright AF, Rudd PM, Hayward C, Aulchenko Y, Campbell H, Rudan I. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9(1):e1003225.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Aurer I, Lauc G, Dumic J, Rendic D, Matisic D, Milos M, Heffer-Lauc M, Flogel M, Labar B. Aberrant glycosylation of Igg heavy chain in multiple myeloma. Coll Antropol. 2007;31(1):247–51.

    CAS  PubMed  Google Scholar 

  5. Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun. 2015;57:1–13.

    CAS  PubMed  Google Scholar 

  6. Osorio F, e Sousa CR. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 2011;34:651–64.

    CAS  PubMed  Google Scholar 

  7. Dam TK, Brewer FC. Maintenance of cell surface glycan density by lectin-glycan interactions: a homeostatic and innate immune regulatory mechanism. Glycobiology. 2010;20:1061–4.

    CAS  PubMed  Google Scholar 

  8. Dube DH, Bertozzi CR. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat Rev Drug Discov. 2005;4:477–88.

    CAS  PubMed  Google Scholar 

  9. Rabinovich GA, Kooyk Y, Cobb BA. Glycobiology of immune responses. Ann N Y Acad Sci. 2012;1253:1–15.

    CAS  PubMed  Google Scholar 

  10. Buzás EI, Gÿorgy B, Pásztói M, Jelinek I, Falus A, Gabius HJ. Carbohydrate recognition systems in autoimmunity. Autoimmunity. 2006;39:691–704.

    PubMed  Google Scholar 

  11. van Vliet SJ, Saeland E, van Kooyk Y. Sweet preferences of MGL:carbohydrate specificity and function. Trends Immunol. 2008;29:83–90.

    PubMed  Google Scholar 

  12. Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature. 2001;409:733–9.

    CAS  PubMed  Google Scholar 

  13. van Vliet SJ, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat Immunol. 2006;24:1200–8.

    Google Scholar 

  14. Grigorian A, Araujo L, Naidu NN, Place DJ, Choudhury B, Demetriou M. N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. J Biol Chem. 2011;286:40133–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee SU, Grigorian A, Pawling J, Chen IJ, Gao G, Mozaffar T, McKerlie C, Demetriou M. N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J Biol Chem. 2007;282(46):33725–34.

    CAS  PubMed  Google Scholar 

  16. Green RS, Stone EL, Tenno M, Lehtonen E, Farquhar MG, Marth JD. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity. 2007;27:308–20.

    CAS  PubMed  Google Scholar 

  17. Hiki Y, Odani H, Takahashi M, et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001;59:1077–85.

    CAS  PubMed  Google Scholar 

  18. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.

    CAS  Google Scholar 

  19. Ju T, Otto VI, Cummings RD. The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl. 2011;50(8):1770–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature. 2011;475:110–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ju T, Cummings RD. Protein glycosylation: chaperone mutation in Tn syndrome. Nature. 2005;437:1252.

    CAS  PubMed  Google Scholar 

  22. Kudo T, Sato T, Hagiwara K, Kozuma Y, Yamaguchi T, Ikehara Y, Hamada M, Matsumoto K, Ema M, Murata S, Ohkohchi N, Narimatsu H, Takahashi S. C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood. 2013;122:1649–57.

    CAS  PubMed  Google Scholar 

  23. Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vermeulen ME, Geffner JR, Rabinovich GA. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol. 2009;10:981–91.

    CAS  PubMed  Google Scholar 

  24. Lantéri M, Giordanengo V, Hiraoka N, Fuzibet JG, Auberger P, Fukuda M, Baum LG, Lefebvre JC. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Glycobiology. 2003;13(12):909–18.

    PubMed  Google Scholar 

  25. Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J, Hernandez JD, Zwirner NW, Poirier F, Riley EM, Baum LG, Rabinovich GA. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol. 2007;8:825–34.

    CAS  PubMed  Google Scholar 

  26. Hernandez JD, Nguyen JT, He J, Wang W, Ardman B, Green JM, Fukuda M, Baum LG. Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J Immunol. 2006;177(8):5328–36.

    CAS  PubMed  Google Scholar 

  27. Zhou Y, Kawasaki H, Hsu SC, et al. Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1. Nat Med. 2010;16:1128–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bi S, Hong PW, Lee B, Baum LG. Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. Proc Natl Acad Sci U S A. 2011;108(26):10650–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jellusova J, Wellmann U, Amann K, et al. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity. J Immunol. 2010;184:3618–27.

    CAS  PubMed  Google Scholar 

  30. Cornelissen LA, Van Vliet SJ. A bitter sweet symphony: immune responses to altered O-glycan epitopes in cancer. Biomol Ther. 2016;6(2):E26.

    Google Scholar 

  31. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    CAS  PubMed  Google Scholar 

  32. Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–66.

    PubMed  Google Scholar 

  33. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet. 2000;356:1795–9.

    CAS  PubMed  Google Scholar 

  34. Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio L, Moretta L, Bosco MC, Vitale M. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol. 2013;43:2756–64.

    CAS  PubMed  Google Scholar 

  35. Saeland E, van Vliet SJ, Bäckström M, et al. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol Immunother. 2007;56:1225–36.

    CAS  PubMed  Google Scholar 

  36. RodrÍguez E, Schetters STT, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol. 2018;18(3):204–11.

    PubMed  Google Scholar 

  37. Mortezai N, Behnken HN, Kurze AK, Ludewig P, Buck F, Meyer B, Wagener C. Tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens bind to C-type lectin CLEC10A (CD301, MGL). Glycobiology. 2013;23(7):844–52.

    CAS  PubMed  Google Scholar 

  38. Lenos K, Goos JA, Vuist IM, den Uil SH, Delis-van Diemen PM, Belt EJ, Stockmann HB, Bril H, de Wit M, Carvalho B, Giblett S, Pritchard CA, Meijer GA, van Kooyk Y, Fijneman RJ, van Vliet SJ. MGL ligand expression is correlated to BRAF mutation and associated with poor survival of stage III colon cancer patients. Oncotarget. 2015;6:26278–90.

    PubMed  PubMed Central  Google Scholar 

  39. Saeland E, Belo AI, Mongera S, van Die I, Meijer GA, van Kooyk Y. Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer. 2012;131(1):117–28.

    CAS  PubMed  Google Scholar 

  40. Caminischi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, Rizzitelli A, Wu L, Vremec D, van Dommelen SL, Campbell IK, Maraskovsky E, Braley H, Davey GM, Mottram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortman K, Lahoud MH. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood. 2008;112:3264–73.

    Google Scholar 

  41. Aarnoudse CA, Bax M, Sánchez-Hernández M, Garcia-Vallejo JJ, van Kooyk Y. Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells. Int J Cancer. 2008;122:839–46.

    CAS  PubMed  Google Scholar 

  42. Singh SK, Streng-Ouwehand I, Litjens M, Kalay H, Burgdorf S, Saeland E, Kurts C, Unger WW, van Kooyk Y. Design of neo-glycoconjugates that target the Mannose Receptor and enhance TLR independent cross-presentation and Th1 polarization. Eur J Immunol. 2011;41:916–25.

    CAS  PubMed  Google Scholar 

  43. Salatino M, Rabinovich GA. Fine-tuning antitumor responses through the control of galectinglycan interactions: an overview. Methods Mol Biol. 2011;677:355–74.

    CAS  PubMed  Google Scholar 

  44. Cedeno-Laurent F, Opperman MJ, Barthel SR, Hays D, Schatton T, Zhan Q, He X, Matta KL, Supko JG, Frank MH, Murphy GF, Dimitroff CJ. Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity. J Invest Dermatol. 2012;132:410–20.

    CAS  PubMed  Google Scholar 

  45. Banh A, Zhang J, Cao H, Bouley DM, Kwok S, Kong C, Giaccia AJ, Koong AC, Le QT. Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Cancer Res. 2011;71:4423–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Soldati R, Berger E, Zenclussen AC, Jorch G, Lode HN, Salatino M, Rabinovich GA, Fest S. Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments. Int J Cancer. 2012;131(5):1131–41.

    CAS  PubMed  Google Scholar 

  47. Ilarregui JM, Croci DO, Bianco GA, Jorch G, Lode HN, Salatino M, Rabinovich GA, Fest S. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol. 2009;10:981–91.

    CAS  PubMed  Google Scholar 

  48. Dardalhon V, Anderson AC, Karman J, Apetoh L, Chandwaskar R, Lee DH, Cornejo M, Nishi N, Yamauchi A, Quintana FJ, Sobel RA, Hirashima M, Kuchroo VK. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J Immunol. 2010;185:1383–92.

    CAS  PubMed  Google Scholar 

  49. Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K, Squifflet JL, Weynand B, Carrasco J, Lurquin C, Courtoy PJ, van der Bruggen P. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res. 2010;70:7476–88.

    CAS  PubMed  Google Scholar 

  50. Tsuboi S, Sutoh M, Hatakeyama S, Hiraoka N, Habuchi T, Horikawa Y, Hashimoto Y, Yoneyama T, Mori K, Koie T, Nakamura T, Saitoh H, Yamaya K, Funyu T, Fukuda M, Ohyama C. A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans. EMBO J. 2011;30:3173–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur J Immunol. 2003;33:1642–8.

    CAS  PubMed  Google Scholar 

  52. Ohta M, Ishida A, Toda M, Akita K, Inoue M, Yamashita K, Watanabe M, Murata T, Usui T, Nakada H. Immunomodulation of monocyte-derived dendritic cells through ligation of tumor-produced mucins to Siglec-9. Biochem Biophys Res Commun. 2010;402:663–9.

    CAS  PubMed  Google Scholar 

  53. Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006;311:17–58.

    CAS  PubMed  Google Scholar 

  54. Langerhans P. Uber die Nerven der menschlichen Haut. Virchows Arch [A]. 1868;44:325–37.

    Google Scholar 

  55. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985;61:526–46.

    Google Scholar 

  57. Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010;234(1):120–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilson NS, Villadangos JA. Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol Cell Biol. 2004;82:91–8.

    PubMed  Google Scholar 

  59. Lutz MB. Differentiation stages and subsets of tolerogenic dendritic cells. In: Lutz MB, Romani N, Steinkasserer A, editors. Handbook of dendritic cells. Biology, diseases and therapy. Weinheim: VCH-Wiley; 2006. p. 517–43.

    Google Scholar 

  60. Simon JC, Tigelaar RE, Bergstresser PR, Edelbaum D, Cruz PD Jr. Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. Induction of specific clonal anergy in CD4+ T helper 1 cells. J Immunol. 1991;146(2):485–91.

    CAS  PubMed  Google Scholar 

  61. Vendelova E, Ashour D, Blank P, Erhard F, Saliba AE, Kalinke U, Lutz MB. Tolerogenic transcriptional signatures of steady-state and pathogen-induced dendritic cells. Front Immunol. 2018;9:333.

    PubMed  PubMed Central  Google Scholar 

  62. Yu X, Malenka RC. Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci. 2003;6(11):1169–77.

    CAS  PubMed  Google Scholar 

  63. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 2011;34(2):237–46.

    CAS  PubMed  Google Scholar 

  64. Mellman I, Clausen BE. Immunology. Beta-catenin balances immunity. Science. 2010;329(5993):767–9.

    CAS  PubMed  Google Scholar 

  65. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–3.

    CAS  PubMed  Google Scholar 

  67. Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin Exp Immunol. 2017;188(2):183–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Garlatti V, Belloy N, Martin L, Lacroix M, Matsushita M, Endo Y, Fujita T, Fontecilla-Camps JC, Arlaud GJ, Thielens NM, Gaboriaud C. Structural insights into the innate immune recognition specificities of L- and H-ficolins. EMBO J. 2007;26(2):623–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nat Rev Microbiol. 2008;6:132–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kraiczy P, Würzner R. Complement escape of human pathogenic bacteria by acquisition of complement regulators. Mol Immunol. 2006;43:31–44.

    CAS  PubMed  Google Scholar 

  71. Prasadarao NV, Blom AM, Villoutreix BO, Linsangan LC. A novel interaction of outer membrane protein A with C4b binding protein mediates serum resistance of Escherichia coli K1. J Immunol. 2002;169:6352–60.

    CAS  PubMed  Google Scholar 

  72. Boisen N, Ruiz-Perez F, Scheutz F, Krogfelt KA, Nataro JP. High prevalence of serine protease autotransporter cytotoxins among strains of enteroaggregative Escherichia coli. Am J Trop Med Hyg. 2009;80:294–301.

    CAS  PubMed  Google Scholar 

  73. Abreu AG, Fraga TR, Granados Martinez AP, Kondo MY, Juliano MA, Juliano L, et al. The serine protease pic from enteroaggregative Escherichia coli mediates immune evasion by the direct cleavage of complement proteins. J Infect Dis. 2015;212:106–15.

    CAS  PubMed  Google Scholar 

  74. Domenech M, Ramos-Sevillano E, García E, Moscoso M, Yuste J. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun. 2013;81:2606–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Adler Sørensen C, Rosbjerg A, Hebbelstrup Jensen B, Krogfelt KA, Garred P. The lectin complement pathway is involved in protection against enteroaggregative Escherichia coli infection. Front Immunol. 2018;9:1153.

    PubMed  PubMed Central  Google Scholar 

  76. Axelgaard E, Jensen L, Dyrlund TF, Nielsen HJ, Enghild JJ, Thiel S, et al. Investigations on collectin liver 1. J Biol Chem. 2013;288:23407–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ma YJ, Skjoedt MO, Garred P. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway – the fifth lectin pathway initiation complex. J Innate Immun. 2013;5:242–50.

    CAS  PubMed  Google Scholar 

  78. Dobo J, Pal G, Cervenak L, Gal P. The emerging roles of mannose-binding lectin-associated serine proteases (MASPs) in the lectin pathway of complement and beyond. Immunol Rev. 2016;274:98–111.

    CAS  PubMed  Google Scholar 

  79. Garred P, Honore C, Ma YJ, Munthe-Fog L, Hummelshoj T. MBL2, FCN1, FCN2 and FCN3-The genes behind the initiation of the lectin pathway of complement. Mol Immunol. 2009;46(14):2737–44.

    CAS  PubMed  Google Scholar 

  80. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Matsushita M. Ficolins: complement-activating lectins involved in innate immunity. J Innate Immun. 2010;2:24–32.

    CAS  PubMed  Google Scholar 

  82. Hashimoto C, Hudson KL, Anderson KV. The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988;52(2):269–79.

    CAS  PubMed  Google Scholar 

  83. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/Cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–83.

    CAS  PubMed  Google Scholar 

  84. Kawai T, Akira S. Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins. EMBO Mol Med. 2011;3(9):513–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Swaan PW, Bensman T, Bahadduri PM, Hall MW, Sarkar A, Bao S, Khantwal CM, Ekins S, Knoell DL. Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2. Am J Respir Cell Mol Biol. 2008;39(5):536–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ladisch S, Becker H, Ulsh L. Immunosuppression by human gangliosides. I. Relationship of carbohydrate structure to the inhibition of T cell responses. Biochim Biophys Acta. 1992;1125:180–8.

    CAS  PubMed  Google Scholar 

  87. Osorio F, Reise SC. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 2011;34:651–64.

    CAS  PubMed  Google Scholar 

  88. Van Die I, Cummings RD. Glycan mimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology. 2010;20:2–12.

    PubMed  Google Scholar 

  89. Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG. Candida albicans morphogenesis and host defense: discriminating invasion from colonization. Nat Rev Microbiol. 2012;10:112–22.

    CAS  Google Scholar 

  90. Aarnoudse CA, Bax M, Sánchez-Hernández M, et al. Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells. Int J Cancer. 2008;122(839–14):46.

    Google Scholar 

  91. Gringhuis SI, van Dunnen J, Litjens M, et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity. 2007;26:605–16.

    CAS  PubMed  Google Scholar 

  92. Gringhuis SI, den Dunnen J, Litjens M, et al. Carbohydrate-specific signalling through the DCSIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol. 2009;10:1081–8.

    CAS  PubMed  Google Scholar 

  93. Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9:465–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Geijtenbeek TBH, van Vliet SJ, Engering A, et al. Self- and non-self recognition by C-type lectins on dendritic cells. Ann Rev Immunol. 2003;22:33–54.

    Google Scholar 

  95. García-Vallejo JJ, Ilarregui JM, Kalay H, Chamorro S, Koning N, Unger WW, Ambrosini M, Montserrat V, Fernandes RJ, Bruijns SC, van Weering JR, Paauw NJ, O’Toole T, van Horssen J, van der Valk P, Nazmi K, Bolscher JG, Bajramovic J, Dijkstra CD, ‘t Hart BA, van Kooyk Y. CNS myelin induces regulatory functions of DC-SIGN-expressing, antigen-presenting cells via cognate interaction with MOG. J Exp Med. 2014;211(7):1465–83.

    PubMed  PubMed Central  Google Scholar 

  96. García-Vallejo JJ, Ilarregui JM, Kalay H, Chamorro S, Koning N, Unger WW, Ambrosini M, Montserrat V, Fernandes RJ, Bruijns SC, van Weering JR, Paauw NJ, O’ Toole T, van Horssen J, van der Valk P, Nazmi K, Bolscher JG, Bajramovic J, Dijkstra CD, Hart BA, van Kooyk Y. CNS myelin induces regulatory functions of DC-SIGN-expressing, antigen-presenting cells via cognate interaction with MOG. J Exp Med. 2014;211(7):1465–83.

    PubMed  PubMed Central  Google Scholar 

  97. Bax M, Kuijf ML, Heikema AP, van Rijs W, Bruijns SC, García-Vallejo JJ, Crocker PR, Jacobs BC, van Vliet SJ, van Kooyk Y. Campylobacter jejuni lipooligosaccharides modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent manner. Infect Immun. 2011;79(7):2681–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Geijtenbeek TBH, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell specific HIV-1 binding protein that enhances trans-infection of T cells. Cell. 2000;100:587–97.

    CAS  PubMed  Google Scholar 

  99. de Witte L, Nabatov A, Prion M, et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med. 2007;13:367–71.

    PubMed  Google Scholar 

  100. Lambert AA, Gilbert C, Richard M, et al. The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans-and cis-infection pathways. Blood. 2008;112:1299–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Garcia-Vallejo JJ, van Kooyk Y. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostatis. Immunol Rev. 2009;230:22–37.

    CAS  PubMed  Google Scholar 

  102. van Gisbergen KPJM, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med. 2005;201:1281–92.

    PubMed  PubMed Central  Google Scholar 

  103. van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol. 2008;9:593–601.

    PubMed  Google Scholar 

  104. Izumi M, Shen GJ, Wacowich-Sgarbi S, Nakatani T, Plettenburg O, Wong CH. Microbial glycosyltransferases for carbohydrate synthesis: alpha-2,3-sialyltransferase from Neisseria gonorrhoeae. J Am Chem Soc. 2001;123(44):10909–18.

    CAS  PubMed  Google Scholar 

  105. Guo Y, Jers C, Meyer AS, Li H, Kirpekar F, Mikkelsen JD. Modulating the regioselectivity of a Pasteurella multocida sialyltransferase for biocatalytic production of 3'- and 6'-sialyllactose. Enzym Microb Technol. 2015;78:54–62.

    CAS  Google Scholar 

  106. Fox KL, Cox AD, Gilbert M, Wakarchuk WW, Li J, Makepeace K, Richards JC, Moxon ER, Hood DW. Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae: incorporation of disialic acid. J Biol Chem. 2006;281(52):40024–32.

    CAS  PubMed  Google Scholar 

  107. Kuijf ML, Samsom JN, van Rijs W, Bax M, Huizinga R, Heikema AP, van Doorn PA, van Belkum A, van Kooyk Y, Burgers PC, Luider TM, Endtz HP, Nieuwenhuis EE, Jacobs BC. TLR4-mediated sensing of Campylobacter jejuni by dendritic cells is determined by sialylation. J Immunol. 2010;185(1):748–55.

    CAS  PubMed  Google Scholar 

  108. Jang JH, Shin HW, Lee JM, Lee HW, Kim EC, Park SH. An overview of pathogen recognition receptors for innate immunity in dental pulp. Mediators Inflamm. 2015;2015:794143.

    PubMed  PubMed Central  Google Scholar 

  109. Kabelitz D, Wesch D, Oberg HH. Regulation of regulatory T cells: role of dendritic cells and toll-like receptors. Crit Rev Immunol. 2006;26(4):291–306.

    CAS  PubMed  Google Scholar 

  110. Broad A, Kirby JA, Jones DEJ. Toll-like receptor interactions: tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-β production. Immunology. 2007;120(1):103–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Saito T, Hirai R, Loo YM, et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-1 and LGP2. Proc Natl Acad Sci U S A. 2007;104(2):582–7.

    CAS  PubMed  Google Scholar 

  112. Pääkkönen V, Rusanen P, Hagström J, Tjäderhane L. Mature human odontoblasts express virus-recognizing toll-like receptors. Int Endod J. 2014;47(10):934–41.

    PubMed  Google Scholar 

  113. O’Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.

    PubMed  Google Scholar 

  114. Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene. 2007;26(22):3214–26.

    CAS  PubMed  Google Scholar 

  115. Mariano VS, Zorzetto-Fernandes AL, da Silva TA, Ruas LP, Nohara LL, Almeida IC, Roque-Barreira MC. Recognition of TLR2 N-glycans: critical role in ArtinM immunomodulatory activity. PLoS One. 2014;9:e98512.

    PubMed  PubMed Central  Google Scholar 

  116. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007;130:1071–82.

    CAS  PubMed  Google Scholar 

  117. Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 2001;13:933–40.

    CAS  PubMed  Google Scholar 

  118. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2009;11:155–61.

    PubMed  PubMed Central  Google Scholar 

  119. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science. 2008;320:379–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Núñez Miguel R, Wong J, Westoll JF, Brooks HJ, O’Neill LA, Gay NJ, Bryant CE, Monie TP. A dimer of the toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS One. 2007;2:e788.

    PubMed  PubMed Central  Google Scholar 

  121. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335:859–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Muta T, Takeshige K. Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR) 2 as well as TLR4. Eur J Biochem. 2001;268:4580–9.

    CAS  PubMed  Google Scholar 

  123. Triantafilou M, Gamper FGJ, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006;281:31002–11.

    CAS  PubMed  Google Scholar 

  124. Rapsinski GJ, Newman TN, Oppong GO, van Putten JPM, Tükel Ç. CD14 protein acts as an adaptor molecule for the immune recognition of Salmonella curli fibers. J Biol Chem. 2013;288:14178–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jimenez-Dalmaroni MJ, Xiao N, Corper AL, Verdino P, Ainge GD, Larsen DS, Painter GF, Rudd PM, Dwek RA, Hoebe K, Beutler B, Wilson IA. Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2. PLoS One. 2009;4:e7411.

    PubMed  PubMed Central  Google Scholar 

  126. Mifsud EJ, Tan ACL, Jackson DC. TLR agonists as modulators of the innate immune response and their potential as agents against infectious disease. Front Immunol. 2014;5:79. https://doi.org/10.3389/fimmu.2014.00079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Baik JE, Ryu YH, Han J, et al. Lipoteichoic acid partially contributes to the inflammatory responses to Enterococcus faecalis. J Endod. 2008;34(8):975–82.

    PubMed  Google Scholar 

  128. Buwitt-Beckmann U, Heine H, Wiesmüller KH, et al. TLR1- and TLR6-independent recognition of bacterial lipopeptides. J Biol Chem. 2006;281(14):9049–57.

    CAS  PubMed  Google Scholar 

  129. Okusawa T, Fujita M, Nakamura JI, et al. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by toll-like receptors 2 and 6. Infect Immun. 2004;72(3):1657–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Agnese DM, Calvano JE, Hahm SJ, et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis. 2002;186(10):1522–5.

    CAS  PubMed  Google Scholar 

  131. Smith KD, Ozinsky A. Toll-like receptor-5 and the innate immune response to bacterial flagellin. Curr Top Microbiol Immunol. 2002;270:93–108.

    CAS  PubMed  Google Scholar 

  132. Bambou J-C, Giraud A, Menard S, et al. In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem. 2004;279(41):42984–92.

    CAS  PubMed  Google Scholar 

  133. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17(1):1–14.

    CAS  PubMed  Google Scholar 

  134. Maeda Y, Kinoshita T. Prog Lipid Res. 2011;50:411–24.

    CAS  PubMed  Google Scholar 

  135. Ferguson MAJ, Kinoshita T, Hart GW. Glycosylphosphatidylinositol Anchors. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, et al., editors. Essentials of glycobiology. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  136. Gonzalez M, Lipke PN, Ovalle R. Chapter 15 GPI proteins in biogenesis and structure of yeast cell walls. The Enzymes, Volume. 2009;26:321–56.

    CAS  Google Scholar 

  137. Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci. 1999;112(Pt 17):2799–809. Review

    CAS  PubMed  Google Scholar 

  138. Pereira-Chioccola VL, Acosta-Serrano A, Correia de Almeida I, Ferguson MA, Souto-Padron T, Rodrigues MM, Travassos LR, Schenkman S. Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies. J Cell Sci. 2000;113(Pt 7):1299–307.

    CAS  PubMed  Google Scholar 

  139. Mayor S, Riezman H. Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol. 2004;5:110–20.

    CAS  PubMed  Google Scholar 

  140. Bruna-Romero O, Rocha CD, Tsuji M, Gazzinelli RT. Enhanced protective immunity against malaria by vaccination with a recombinant adenovirus encoding the circumsporozoite protein of Plasmodium lacking the GPI-anchoring motif. Vaccine. 2004;22(27–28):3575–84.

    CAS  PubMed  Google Scholar 

  141. Schneider DS, Hudson KL, Lin TY, Anderson KV. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev. 1991;5(5):797–807.

    CAS  PubMed  Google Scholar 

  142. Sea Urchin Genome Sequencing Consortium. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006;314(5801):941–52. Erratum in: Science. 2007 Feb 9;315(5813):766

    PubMed Central  Google Scholar 

  143. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005;201(1):19–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Franklin BS, et al. Therapeutic targeting of nucleic acid sensing-Toll-like receptors prevents cerebral malaria. PNAS. 2011;108:3689.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Dankwa S, Lim C, Bei AK, Jiang RH, Abshire JR, Patel SD, Goldberg JM, Moreno Y, Kono M, Niles JC, Duraisingh MT. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite. Nat Commun. 2016;7:11187.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sullivan WJ, Jeffers V. Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev. 2012;36:717–33.

    CAS  PubMed  Google Scholar 

  147. Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25:264–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kodym P, Maly M, Beran O, Jilich D, Rozsypal H, Machala L, Holub M. Incidence, immunological and clinical characteristics of reactivation of latent Toxoplasma gondii infection in HIV-infected patients. Epidemiol Infect. 2014;143:600–7.

    PubMed  Google Scholar 

  149. Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol. 1997;73:114–23.

    CAS  PubMed  Google Scholar 

  150. Marchant J, Cowper B, Liu Y, Lai L, Pinzan C, Marq JB, Friedrich N, Sawmynaden K, Liew L, Chai W, et al. Galactose recognition by the apicomplexan parasite Toxoplasma gondii. J Biol Chem. 2012;287:16720–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sardinha-Silva A, Mendonça-Natividade FC, Pinzan CF, Lopes CD, Costa DL, Jacot D, Fernandes FF, Zorzetto-Fernandes ALV, Gay NJ, Sher A, Jankovic D, Soldati-Favre D, Grigg ME, Roque-Barreira MC. The lectin-specific activity of Toxoplasma gondii microneme proteins 1 and 4 binds Toll-like receptor 2 and 4 N-glycans to regulate innate immune priming. PLoS Pathog. 2019;15:e1007871.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Paing MM, Tolia NH. Multimeric assembly of host-pathogen adhesion complexes involved in apicomplexan invasion. PLoS Pathog. 2014;10:e1004120.

    PubMed  PubMed Central  Google Scholar 

  153. Saouros S, Edwards-Jones B, Reiss M, Sawmynaden K, Cota E, Simpson P, Dowse TJ, Jäkle U, Ramboarina S, Shivarattan T, Matthews S, Soldati-Favre D. A novel galectin-like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a cell adhesion complex. J Biol Chem. 2005;280:38583–91.

    CAS  PubMed  Google Scholar 

  154. Yarovinsky F. Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol. 2014;14:109–21.

    CAS  PubMed  Google Scholar 

  155. Sardinha-Silva A, Mendonça-Natividade FC, Pinzan CF, Lopes CD, Costa DL, Jacot D, Fernandes FF, Zorzetto-Fernandes ALV, Gay NJ, Sher A, Jankovic D, Soldati-Favre D, Grigg ME, Roque-Barreira MC. The lectin-specific activity of Toxoplasma gondii microneme proteins 1 and 4 binds Toll-like receptor 2 and 4 N-glycans to regulate innate immune priming. PLoS Pathog. 2019;215(6):e1007871.

    Google Scholar 

  156. Lourenço EV, Pereira SR, Faça VM, Coelho-Castelo AA, Mineo JR, Roque-Barreira MC, Greene LJ, Panunto-Castelo A. Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin. Glycobiology. 2001;11:541–7.

    PubMed  Google Scholar 

  157. Weber AN, Morse MA, Gay NJ. Four N-linked glycosylation sites in human toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J Biol Chem. 2004;279(33):34589–94.

    CAS  PubMed  Google Scholar 

  158. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procópio DO, Travassos LR, Smith JA, Golenbock DT, Gazzinelli RT. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol. 2001;167:416–23.

    CAS  PubMed  Google Scholar 

  159. Debierre-Grockiego F, Niehus S, Coddeville B, Elass E, Poirier F, Weingart R, Schmidt RR, Mazurier J, Guérardel Y, Schwarz RT. Binding of Toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is required for their recognition by macrophages. J Biol Chem. 2010;285(43):32744–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sardinha-Silva A, Mendonca-Natividade FC, Pinzan CF, Lopes CD, Costa DL, Jacot D, Fernandes FF, Zorzetto-Fernandes ALV, Gay NJ, Sher A, et al. Toxoplasma gondii microneme proteins 1 and 4 bind to Toll-like receptors 2 and 4 N-glycans triggering innate immune response. bioRxiv. 2017:187690.

    Google Scholar 

  161. Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, Mansur DS, Weingart R, Schmidt RR, Golenbock DT, Gazzinelli RT, Schwarz RT. Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. J Immunol. 2007;179:1129–37.

    CAS  PubMed  Google Scholar 

  162. van den Berg TK, Honing H, Franke N, van Remoortere A, Schiphorst WE, Liu FT, Deelder AM, Cummings RD, Hokke CH, van Die I. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J Immunol. 2004;173:1902–7.

    PubMed  Google Scholar 

  163. Miller MC, Klyosov A, Mayo KH. The alpha-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain. Glycobiology. 2009;19:1034–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Roda O, Ortiz-Zapater E, Martínez-Bosch N, Gutiérrez-Gallego R, Vila-Perelló M, Ampurdanés C, Gabius HJ, André S, Andreu D, Real FX, Navarro P. Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer. Gastroenterology. 2009;136:1379–90, e1–e5

    CAS  PubMed  Google Scholar 

  165. Bernardes ES, Silva NM, Ruas LP, Mineo JR, Loyola AM, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC. Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am J Pathol. 2006;168:1910–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Jouault T, El Abed-El BM, Martínez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, Trottein F, Poulain D. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol. 2006;177:4679–87.

    CAS  PubMed  Google Scholar 

  167. Weber KB, Shroyer KR, Heinz DE, Nawaz S, Said MS, Haugen BR. The use of a combination of galectin-3 and thyroid peroxidase for the diagnosis and prognosis of thyroid cancer. Am J Clin Pathol. 2004;122:524–31.

    PubMed  Google Scholar 

  168. Ferraz LC, Bernardes ES, Oliveira AF, Ruas LP, Fermino ML, Soares SG, Loyola AM, Oliver C, Jamur MC, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC. Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection. Eur J Immunol. 2008;38:2762–75.

    CAS  PubMed  Google Scholar 

  169. Giordanengo L, Gea S, Barbieri G, Rabinovich GA. Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: differential expression of this beta-galactoside-binding protein in cardiac Chagas’ disease. Clin Exp Immunol. 2001;124:266–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Okumura CY, Baum LG, Johnson PJ. Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol. 2008;10:2078–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Li Y, Komai-Koma M, Gilchrist DS, Hsu DK, Liu FT, Springall T, Xu D. Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. J Immunol. 2008;181:2781–9.

    CAS  PubMed  Google Scholar 

  172. Breuilh L, Vanhoutte F, Fontaine J, van Stijn CM, Tillie-Leblond I, Capron M, Faveeuw C, Jouault T, van Die I, Gosset P, Trottein F. Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infect Immun. 2007;75:5148–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Alves CM, Silva DA, Azzolini AE, Marzocchi-Machado CM, Carvalho JV, Pajuaba AC, Lucisano-Valim YM, Chammas R, Liu FT, Roque-Barreira MC, Mineo JR. Galectin-3 plays a modulatory role in the life span and activation of murine neutrophils during early Toxoplasma gondii infection. Immunobiology. 2010;215:475–85.

    CAS  PubMed  Google Scholar 

  174. Andrade WA, Souza Mdo C, Ramos-Martinez E, Nagpal K, Dutra MS, Melo MB, Bartholomeu DC, Ghosh S, Golenbock DT, Gazzinelli RT. Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice. Cell Host Microbe. 2013;13:42–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Salazar Gonzalez RM, Shehata H, O’Connell MJ, Yang Y, Moreno-Fernandez ME, Chougnet CA, Aliberti J. Toxoplasma gondii-derived profilin triggers human toll-like receptor 5-dependent cytokine production. J Innate Immun. 2014;6:685–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Ricci-Azevedo R, Roque-Barreira MC, Gay NJ. Targeting and recognition of toll-like receptors by plant and pathogen lectins. Front Immunol. 2017;8:1820.

    PubMed  PubMed Central  Google Scholar 

  177. Coltri KC, Oliveira LL, Pinzan CF, Vendruscolo PE, Martinez R, Goldman MH, et al. Therapeutic administration of KM+ lectin protects mice against Paracoccidioides brasiliensis infection via interleukin-12 production in a toll-like receptor 2-dependent mechanism. Am J Pathol. 2008;173:423–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mariano VS, Zorzetto-Fernandes AL, Da Silva TA, Ruas LP, Nohara LL, De Almeida IC, et al. Recognition of TLR2 N-glycans: critical role in ArtinM immunomodulatory activity. PLoS One. 2104;9:e98512.

    Google Scholar 

  179. da Silva TA, Zorzetto-Fernandes ALV, Cecílio NT, Sardinha-Silva A, Fernandes FF, Roque-Barreira MC. CD14 is critical for TLR2-mediated M1 macrophage activation triggered by N-glycan recognition. Sci Rep. 7:1, 7083.

    Google Scholar 

  180. Di Gioia M, Zanoni I. Toll-like receptor co-receptors as master regulators of the immune response. Mol Immunol. 2015;63:143–52.

    PubMed  Google Scholar 

  181. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science. 2005;308(5728):1626–9.

    CAS  PubMed  Google Scholar 

  182. Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R, et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity. 2013;38(1):119–30.

    CAS  PubMed  Google Scholar 

  183. Andrade WA, Souza Mdo C, Ramos-Martinez E, Nagpal K, Dutra MS, Melo MB, et al. Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice. Cell Host Microbe. 2013;13(1):42–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, et al. Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. J Immunol. 2007;179(2):1129–37.

    CAS  PubMed  Google Scholar 

  185. Yang CS, Yuk JM, Lee YH, Jo EK. Toxoplasma gondii GRA7-induced TRAF6 activation contributes to host protective immunity. Infect Immun. 2015;84(1):339–50.

    PubMed  PubMed Central  Google Scholar 

  186. Qiu J, Wang L, Zhang R, Ge K, Guo H, Liu X, et al. Identification of a TNF-alpha inducer MIC3 originating from the microneme of non-cystogenic, virulent Toxoplasma gondii. Sci Rep. 2016;6:39407.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Gay G, Braun L, Brenier-Pinchart MP, Vollaire J, Josserand V, Bertini RL, et al. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-gamma-mediated host defenses. J Exp Med. 2016;213(9):1779–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Alegre-Maller ACP, Mendonça FC, da Silva TA, Oliveira AF, Freitas MS, Hanna ES, et al. Therapeutic administration of recombinant paracoccin confers protection against Paracoccidioides brasiliensis infection: involvement of TLRs. PLoS Negl Trop Dis. 2014;8:e3317.10.

    Google Scholar 

  189. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    CAS  PubMed  Google Scholar 

  190. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    CAS  PubMed  Google Scholar 

  192. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature. 1997;388:782–7.

    CAS  PubMed  Google Scholar 

  193. Pierre P, Turley SJ, Gatti E, Hull M, Meltzer J, Mirza A, Inaba K, Steinman RM, Mellman I. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature. 1997;388:787–92.

    CAS  PubMed  Google Scholar 

  194. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J. Activation of human dendritic cells throughCD40cross-linking. J Exp Med. 1994;180:1263–72.

    CAS  PubMed  Google Scholar 

  195. Reis Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H, Germain RN, Sher A. In vivo microbial stimulation induces rapid CD40 ligand-independent production of inter-leukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med. 1997;186:1819–29.

    CAS  Google Scholar 

  196. Kagan JC, Magupalli VG, Wu H. SMOCs: supramolecular organizing centres that control innate immunity. Nat Rev Immunol. 2014;14:821–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4T cell populations. Annu Rev Immunol. 2010;28:445–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity. 2011;35:161–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Bendelac A, Savage PB, Teyton L. The biology of NK T cells. Annu Rev Immunol. 2007;25:297–336.

    CAS  PubMed  Google Scholar 

  201. Yamane H, Paul WE. Early signaling events that underlie fate decisions of naïve CD4(+) T cells toward distinct T-helper cell subsets. Immunol Rev. 2013;252:12–23.

    PubMed  PubMed Central  Google Scholar 

  202. Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121:2402–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016;16:102–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Josefowicz SJ, Rudensky A. Control of regulatory T cell lineage commitment and maintenance. Immunity. 2009;30:616–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol. 2013;13:88–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Goodnow CC, Vinuesa CG, Randall KL, Mackay F, Brink R. Control systems and decision making for antibody production. Nat Immunol. 2010;11:681–8.

    CAS  PubMed  Google Scholar 

  207. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015;15:160–71.

    CAS  PubMed  Google Scholar 

  208. Huber S, Gagliani N, Flavell RA. Life, death, and miracles: Th17 cells in the intestine. Eur J Immunol. 2012;42(9):2238–45.

    CAS  PubMed  Google Scholar 

  209. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Spiess M. The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry. 1990;29:10009–18.

    CAS  PubMed  Google Scholar 

  211. Sørensen AL, Rumjantseva V, Nayeb-Hashemi S, Clausen H, Hartwig JH, Wandall HH, Hoffmeister KM. Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood. 2009;114(8):1645–54.

    PubMed  PubMed Central  Google Scholar 

  212. Schauer R. Sialic acids and their role as biological masks. Trends Biochem Sci. 1985;10:357–60.

    CAS  Google Scholar 

  213. Weiss P, Ashwell G. The asialoglycoprotein receptor: properties and modulation by ligand. Prog Clin Biol Res. 1989;300:169–84.

    CAS  PubMed  Google Scholar 

  214. Liu FT. Galectins: A new family of regulators of inflammation. Clin Immunol. 2000;97:79–88.

    CAS  PubMed  Google Scholar 

  215. Rabinovich GA, Rubinstein N, Toscano MA. Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta Gen Subj. 2002;1572:274–84.

    CAS  Google Scholar 

  216. Bi S, Baum LG. Sialic acids in T cell development and function. Biochim Biophys Acta. 2009;1790:1599–610.

    CAS  PubMed  Google Scholar 

  217. Ideo H, Matsuzaka T, Nonaka T, Seko A, Yamashita K. Galectin-8-N-domain recognition mechanism for Sialylated and sulfated glycans. J Biol Chem. 2011;286:11346–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Tanaka J, Gleinich AS, Zhang Q, Whitfield R, Kempe K, Haddleton DM, Davis TP, Perrier S, Mitchell DA, Wilson P. Specific and differential binding of N-acetylgalactosamine glycopolymers to the human macrophage galactose lectin and asialoglycoprotein receptor. Biomacromolecules. 2017;18(5):1624–33.

    CAS  PubMed  Google Scholar 

  219. French BM, Sendil S, Pierson RN 3rd, Azimzadeh AM. The role of sialic acids in the immune recognition of xenografts. Xenotransplantation. 2017;24(6) https://doi.org/10.1111/xen.12345.

  220. Lee RT, Hsu TL, Huang SK, Hsieh SL, Wong CH, Lee YC. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobiology. 2011;21:512–20.

    CAS  PubMed  Google Scholar 

  221. van Kooyk Y, Ilarregui JM, van Vliet S. Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. J Immunobiol. 2015;220:185–92.

    Google Scholar 

  222. Grozovsk R, Begonja AJ, Liu K, Visner G, Hartwig JH, Falet H, Hoffmeister KM. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med. 2014;21:47–54.

    Google Scholar 

  223. Hoffmeister KM. The role of lectins and glycans in platelet clearance. J Thromb Haemostasis. 2011;9:35–43.

    CAS  Google Scholar 

  224. Kotze HF, van Wyk V, Badenhorst PN, Heyns AD, Roodt JP, Lotter MG. Influence of platelet membrane sialic acid and platelet-associated IgG on ageing and sequestration of blood platelets in baboons. Thromb Haemost. 1993;70:676–80.

    CAS  PubMed  Google Scholar 

  225. Greenberg J, Packham MA, Cazenave JP, Reimers HJ, Mustard JF. Effects on platelet function of removal of platelet sialic acid by neuraminidase. Lab Investig. 1975;32:476–84.

    CAS  PubMed  Google Scholar 

  226. Bratosin D, Mazurier J, Tissier JP. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages: a review. Biochimie. 1998;80:173–95.

    CAS  PubMed  Google Scholar 

  227. Sorensen AL, Hoffmeister KM, Wandall HH. Glycans and glycosylation of platelets: current concepts and implications for transfusion. Curr Opin Hematol. 2008;15:606–11.

    CAS  PubMed  Google Scholar 

  228. Grewal PK, Uchiyama S, Ditto D. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med. 2008;14:648–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Park EI, Baenziger JU. Closely related mammals have distinct asialoglycoprotein receptor carbohydrate specificities. J Biol Chem. 2004;279:40954–9.

    CAS  PubMed  Google Scholar 

  230. Steirer LM, Park EI, Townsend RR, Baenziger JU. The asialoglycoprotein receptor regulates levels of plasma glycoproteins terminating with sialic acid alpha 2,6 galactose. J Biol Chem. 2008;284:3777–83.

    PubMed  Google Scholar 

  231. Rensen PC, Sliedregt LA, Ferns M, et al. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J Biol Chem. 2001;276:37577–84.

    CAS  PubMed  Google Scholar 

  232. Tribulatti MV, Mucci J, Van Rooijen N, Leguizamon MS, Campetella O. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas’ disease by reducing the platelet sialic acid contents. Infect Immun. 2005;73:201–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Weigel PH, Yik JH. N-Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim Biophys Acta. 2002;1572:341–63.

    CAS  PubMed  Google Scholar 

  234. Tolchinsky S, Yuk MH, Ayalon M, Lodish HF, Lederkremer GZ. Membrane-bound versus secreted forms of human asialoglycoprotein receptor subunits. Role of a juxtamembrane pentapeptide. J Biol Chem. 1996;271(24):14496–503.

    CAS  PubMed  Google Scholar 

  235. Stokmaier D, Khorev O, Cutting B, Born R, Ricklin D, Ernst TO, Böni F, Schwingruber K, Gentner M, Wittwer M, Spreafico M, Vedani A, Rabbani S, Schwardt O, Ernst B. Design, synthesis and evaluation of monovalent ligands for the asialoglycoprotein receptor (ASGP-R). Bioorg Med Chem. 2009;17(20):7254–64.

    CAS  PubMed  Google Scholar 

  236. Fu H, Gerhardt JM, McDaniel B, Xia X, Liu L, Ivanciu A, Ny K, Hermans R, Silasi-Mansat S, McGee E, Nye T, Ju MI, Ramirez P, Carmeliet RD, Cummings F, Lupu LX. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Investig. 2008;118:3725–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Berger EG. Tn-syndrome. Biochim Biophys Acta. 1999;1455:255–68.

    CAS  PubMed  Google Scholar 

  238. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185:642–52.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, CH. (2022). Innate Immunity Via Glycan-Binding Lectin Receptors. In: Glycobiology of Innate Immunology. Springer, Singapore. https://doi.org/10.1007/978-981-16-9081-5_6

Download citation

Publish with us

Policies and ethics