Skip to main content

Ascitic Fluid Testing for Peritoneal Tuberculosis

  • Chapter
  • First Online:
Tuberculosis of the Gastrointestinal system

Abstract

Peritoneal tuberculosis or tuberculous peritonitis (TBP) may account for 30–60% of abdominal tuberculosis. A timely diagnosis is of paramount importance to reduce morbidity and mortality. The presence of ascites offers an opportunity to make a timely diagnosis and hence no opportunity of ascitic fluid analysis should be missed. Tuberculous peritonitis is usually suspected in low serum ascites albumin gradient (SAAG) ascites. Peritoneal tuberculosis is a paucibacillary disease hence it is difficult to isolate the Mycobacterium. Indirect tests therefore, can complement in diagnosis. These tests include adenosine deaminase level, Interferon γ levels and ascitic fluid interferon gamma assay. These complementary tests can form a basis for invasive testing like laparoscopy or can guide a trial of treatment. Confirmatory diagnosis is done by ascitic fluid acid fast (AFB) staining, AFB culture and nucleic acid amplification test (NAAT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guirat A, Koubaab M, Mzalia R, et al. Peritoneal tuberculosis. Clin Res Hepatol Gastroenterol. 2011;35:60–9.

    Article  CAS  PubMed  Google Scholar 

  2. Manohar A, Simjee AE, Haffejee AA, et al. Symptoms and investigative findings in 145 patients with tuberculous peritonitis diagnosed by peritoneoscopy and biopsy over a five-year period. Gut. 1990;31:1130–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wright CA, Bezuidenhout J. Histopathology and cytopathology. In: Zumla AI, Schaff HS, editors. Tuberculosis. 1st ed. London: Saunders Elsevier; 2009. p. 205–15.

    Chapter  Google Scholar 

  4. Raviglione MC, Snider DE Jr, Kochi A. Global epidemiology of tuberculosis: morbidity and mortality of a worldwide epidemic. JAMA. 1995;273:220–6.

    Article  CAS  PubMed  Google Scholar 

  5. Shakil AO, Korula J, Kanel GC, et al. Diagnostic features of tuberculous peritonitis in the absence and presence of chronic liver disease: a case control study. Am J Med. 1996;100:179–85.

    Article  CAS  PubMed  Google Scholar 

  6. Demir K, Okten A, Kaymakoglu S, et al. Tuberculous peritonitis-reports of 26 cases, detailing diagnostic and therapeutic problems. Eur J Gastroenterol Hepatol. 2001;13:581–5.

    Article  CAS  PubMed  Google Scholar 

  7. Saram DS, Friedland JS. Gastrointestinal and peritoneal tuberculosis. In: Sener A, Erdem H, editors. Extrapulmonary tuberculosis. 1st ed. Cham: Springer Nature; 2019. p. 25–42.

    Chapter  Google Scholar 

  8. Sanai FM, Bzeizi KI. Systematic review: tuberculous peritonitis. Presenting features, diagnostic strategies and treatment. Aliment Pharmacol Ther. 2005;22:685–700.

    Article  CAS  PubMed  Google Scholar 

  9. Lui SL, Tang S, Li FK, et al. Tuberculosis infection in Chinesepatients undergoing continuous ambulatory peritonealdialysis. Am J Kidney Dis. 2001;38:1055–60.

    Article  CAS  PubMed  Google Scholar 

  10. Chugh SN, Jain V. Abdominal tuberculosis — current concepts in diagnosis and management. In: Singhal RK, Jain DG, editors. Medicine update, vol. 17. New Delhi: Jaypee Brothers Medical Publishers Private Limited; 2007. p. 600–8.

    Google Scholar 

  11. Runyon BA, Montano AA, Akriviadis EA, et al. The serum-ascites albumin gradient is superior to the exudates- transudate concept in differential diagnosis of ascites. Ann Intern Med. 1992;117:215–20.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu S, Du L, Xu D, et al. Ascitic fluid total protein, a useful marker in non-portal hypertensive ascites. J Gastroenterol Hepatol. 2020;35:271–7.

    Article  CAS  PubMed  Google Scholar 

  13. Soylu A, Ince AT, Polat H, et al. Peritoneal tuberculosis and granulomatous hepatitis secondary to treatment of bladder cancer with Bacillus Calmette-Guérin. Ann Clin Microbiol Antimicrob. 2009;8:12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aguado JM, Pons F, Casafont F, et al. Tuberculous peritonitis: a study comparing cirrhotic and noncirrhotic patients. J Clin Gastroenterol. 1990;12:550–4.

    Article  CAS  PubMed  Google Scholar 

  15. Boyer TD. Diagnosis and management of cirrhotic ascites. In: Zakim D, Boyer TD, editors. Hepatology: a textbook of liver disease. 4th ed. Philadelphia: W.B. Saunders; 2003. p. 631–58.

    Google Scholar 

  16. Bala L, Sharma A, Yellapa RK, et al. NMR spectroscopy of ascitic fluid: discrimination between malignant and benign ascites and comparison of the results with conventional methods. NMR Biomed. 2008;21:606–14.

    Article  CAS  PubMed  Google Scholar 

  17. Lee HH, Carlson RW, Bull DM. Early diagnosis of spontaneous bacterial peritonitis: value of ascitic fluid variables. Infection. 1987;15:232–6.

    Article  CAS  PubMed  Google Scholar 

  18. Wilkins EG. Tuberculosis peritonitis: diagnostic value of the ascitic/blood glucose ratio. Tubercle. 1984;65:47–52.

    Article  CAS  PubMed  Google Scholar 

  19. Feres MC, Martino MC, Maldijian S, et al. Laboratorial validation of an automated assay for the determination of adenosine deaminase activity in pleural fluid and cerebrospinal fluid. J Bras Pneumol. 2008;34:1033–9.

    Article  PubMed  Google Scholar 

  20. Pettersson T, Ojala K, Weber TH. Adenosine deaminase in the diagnosis of pleural effusions. Acta Med Scand. 1984;215:299–304.

    Article  CAS  PubMed  Google Scholar 

  21. Hallur VK, Sharma M, Sethi S, et al. Development and evaluation of multiplex PCR in rapid diagnosis of abdominal tuberculosis. Diagno Microbiol Infect Dis. 2013;76:51–5.

    Article  CAS  Google Scholar 

  22. Jain AK. Abdominal tuberculosis. In: Tandon BN, editor. Tropical Hepatogastroenterology. 1st ed. New Delhi: Elsevier; 2008. p. 653–77.

    Google Scholar 

  23. Sathar MA, Simjee AE, Coovadia YM, et al. Ascitic fluid gamma interferon concentrations and adenosine deaminase activity in tuberculous peritonitis. Gut. 1995;36:419–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hillebrand DJ, Runyon BA, Yasmineh WG, et al. Ascitic fluid adenosine deaminase insensitivity in detecting tuberculous peritonitis in the United States. Hepatology. 1996;24:1408–12.

    Article  CAS  PubMed  Google Scholar 

  25. Bhargava DK, Gupta M, Nijhawan S, et al. Adenosine deaminase (ADA) in peritoneal tuberculosis: diagnostic value in ascitic fluid and serum. Tubercle. 1990;71:121–6.

    Article  CAS  PubMed  Google Scholar 

  26. Fernandez R, Conrado M, Perez A, et al. Ascites adenosine deaminase activity is decreased in tuberculous ascites with low protein content. Am J Gastroenterol. 1991;86:1500–3.

    Google Scholar 

  27. Martinez-Vazquez JM, Ocana I, Ribera E, et al. Adenosine deaminase activity in the diagnosis of tuberculous peritonitis. Gut. 1986;27:1049–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brant CQ, Silva MR, Macedo EP, et al. The value of adenosine deaminase (ADA) determination in the diagnosis of tuberculous ascites. Rev Inst Med Trop Sao Paulo. 1995;37:449–53.

    Article  CAS  PubMed  Google Scholar 

  29. Voigt MD, Kalvaria I, Trey C, et al. Diagnostic value of ascites adenosine deaminase intuberculous peritonitis. Lancet. 1989;1:751–4.

    Article  CAS  PubMed  Google Scholar 

  30. Tao L, Ning HJ, Nie HM, et al. Diagnostic value of adenosine deaminase in ascites for tuberculosis ascites: a meta-analysis. Diagno Microbiol Infect Dis. 2014;79:102–7.

    Article  CAS  Google Scholar 

  31. Sharma SK, Tahir M, Mohan A, et al. Diagnostic accuracy of ascitic fluid IFN-gamma and adenosine deaminase assays in the diagnosis of tuberculous ascites. J Interf Cytokine Res. 2006;26:484–8.

    Article  CAS  Google Scholar 

  32. Faria DK, Faria CS, Doi D, et al. Hybrid panel of biomarkers can be useful in the diagnosis of pleural and peritoneal effusions. Clin Chim Acta. 2019;497:48–53.

    Article  CAS  PubMed  Google Scholar 

  33. Aguado JM, Pons F, Casafont F, San Miguel G, Valle R. Tuberculous peritonitis: a study comparing cirrhotic and noncirrhotic patients. J Clin Gastroenterol. 1990;12:550–4.

    Article  CAS  PubMed  Google Scholar 

  34. Burgess LJ, Swanepoel CG, Taljaard JJF, et al. The use of adenosine deaminase asa diagnostic tool for peritoneal tuberculosis. Tuberculosis. 2001;81:243–8.

    Article  CAS  PubMed  Google Scholar 

  35. Liao YJ, Wu CS, Lee SW, et al. Adenosine deaminase activity in tuberculous peritonitis among patients with underlying liver cirrhosis. World J Gastroenterol. 2012;18:5260–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lewinsohn DM, Leonard MK, Lobue PA, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis. 2017;64:111–5.

    Article  PubMed  Google Scholar 

  37. Ribera E, Martinez-Vasquez JM, Ocana I, et al. Diagnostic value of ascites gamma interferon levelsin tuberculous peritonitis. Comparison with adenosine deaminase activity. Tubercle. 1991;72:193–7.

    Article  CAS  PubMed  Google Scholar 

  38. Su SB, Qin SY, Guo XY, et al. Assessment by meta-analysis of interferon-gamma for thediagnosis of tuberculous peritonitis. World J Gastroenterol. 2013;19:1645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Metcalfe JZ, Everett CK, Steingart KR, et al. Interferon-γrelease assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: systematic review and meta-analysis. J Infect Dis. 2011;204:S1120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bourgain G, Sbai W, Luciano L, et al. Hepato-peritoneal tuberculosis with negative interferon gamma assay (Quantiferon TM) in an immunocompetent patient: a case report. Clin Res Hepatol Gastroenterol. 2016;40:e44–5.

    Article  CAS  PubMed  Google Scholar 

  41. Losi M, Bossink A, Codecasa L, et al. Use of a T-cell interferon-gamma release assay for the diagnosis of tuberculous pleurisy. Eur Respir J. 2007;30:1173–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jafari C, Thijsen S, Sotgiu G, et al. Bronchoalveolar lavage enzyme-linked immunospot for a rapid diagnosis of tuberculosis: a tuberculosis network European Trialsgroup study. Am J Respir Crit Care Med. 2009;180:666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Place S, Verscheure V, de San N, et al. Heparin-binding, hemagglutinin-specific IFN-gamma synthesis at the site of infection during active tuberculosis in humans. Am J Respir Crit Care Med. 2010;182:848–54.

    Article  CAS  PubMed  Google Scholar 

  44. Cho OH, Park KH, Park SJ, et al. Rapid diagnosis of tuberculous peritonitis by T cell-based assays on peripheral blood and peritoneal fluid mononuclear cells. J Infect. 2011;62:462–71.

    Article  PubMed  Google Scholar 

  45. Kim SH, Choi SJ, Kim HB, et al. Diagnostic usefulness of a T-cell-based assay for extrapulmonary tuberculosis. Arch Intern Med. 2007;167:2255–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kim SH, Song KH, Choi SJ, et al. Diagnostic usefulness of a T-cell-based assay for extrapulmonary tuberculosis in immunocompromised patients. Am J Med. 2009;122:189–95.

    Article  PubMed  Google Scholar 

  47. Henrard S, Corbière V, Schandené L, et al. Proportions of interferon-γ-producing ascites lymphocytes in response to mycobacterial antigens: a help for early diagnosis of peritoneal tuberculosis in a low TB incidence country. PLoS One. 2019;14:e0214333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee JY, Kim SM, Park SJ, et al. A rapid and non-invasive 2-step algorithm for diagnosing tuberculous peritonitis using a T cell-based assay on peripheral blood and peritoneal fluid mononuclear cells together with peritoneal fluid adenosine deaminase. J Infect. 2015;70:356–66.

    Article  PubMed  Google Scholar 

  49. Zhou XX, Liu YL, Zhai K, et al. Body fluid interferon-γ release assay for diagnosis of extrapulmonary tuberculosis in adults: a systematic review and meta-analysis. Sci Rep. 2015;5:15284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arend SM, van Meijgaarden KE, de Boer K, et al. Tuberculin skin testing and in vitro T cell responses to ESAT-6 and culture filtrate protein 10 after infection with Mycobacterium marinum or M. kansasii. J Infect Dis. 2002;186:1797–807.

    Article  CAS  PubMed  Google Scholar 

  51. Hobby GL, Holman AP, Iseman MD, Jones J. Enumeration of tubercle bacilli in sputum of patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 1973;4:94–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. World Health Organization. Implementing tuberculosis diagnostics policy framework. Document WHO/HTM/TB/2015.11. Geneva: World Health Organization; 2015.

    Google Scholar 

  53. Bhatia R. Laboratory diagnosis. In: Sharma SK, Mohan A, editors. Tuberculosis. 2nd ed. New Delhi: Jaypee Brothers; 2009.160-72.

    Google Scholar 

  54. Steingart KR, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006;6(9):570–81.

    Article  PubMed  Google Scholar 

  55. World Health Organization. Fluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis. WHO/HTM/TB/2011.8. Geneva: World Health Organization; 2011.

    Google Scholar 

  56. Bera C, Joy Michael JS, Burad D, et al. Tissue Xpert™ MTB/Rif assay is of limited use in diagnosing peritoneal tuberculosis in patients with exudative ascites. Indian J Gastroenterol. 2015;34:395–8.

    Article  PubMed  Google Scholar 

  57. Shah NS, Moodley P, Babaria P, Moodley S, Ramtahal M, Richardson J, et al. Rapid diagnosis of tuberculosis and multidrug resistance by the microscopic-observation drug-susceptibility assay. Am J Respir Crit Care Med. 2011;183:1427–33.

    Article  PubMed  Google Scholar 

  58. Oommen S, Banaji N. Laboratory diagnosis of tuberculosis: advances in technology and drug susceptibility testing. Indian J Med Microbiol. 2017;35:323–31.

    Article  PubMed  Google Scholar 

  59. Singh MM, Bhargava AN, Jain KP. Tuberculous peritonitis: an evaluation of pathogenetic mechanisms, diagnostic procedures and therapeutic measures. N Engl J Med. 1969;281:1091–4.

    Article  CAS  PubMed  Google Scholar 

  60. World Health Organization. Use of liquid TB culture and drug susceptibility testing (DST) in low and medium income settings. Geneva: World Health Organization Geneva; 2007.

    Google Scholar 

  61. Cruciani M, Scarparo C, Malena M, et al. Systematic review of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J Clin Microbiol. 2004;42:2321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chow KM, Chow VC, Hung LC, et al. Tuberculous peritonitis-associated mortality is high among patients waiting for the results of mycobacterial culture of ascitic fluid samples. Clin Infect Dis. 2002;35:409–13.

    Article  PubMed  Google Scholar 

  63. Whitelaw AC, Sturm WA. Microbiological testing for mycobacterium tuberculosis. In: Zumla AI, Schaff HS, editors. Tuberculosis. 1st ed. Edinburgh: Saunders Elsevier; 2009. p. 169–78.

    Chapter  Google Scholar 

  64. Tortoli E, Cichero P, Piersimoni C, et al. Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study. J Clin Microbiol. 1999;37:3578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hillemann D, Richter E, Rusch-Gerdes S. Use of the BACTEC mycobacteria growth indicator tube 960 automated system for recovery of mycobacteria from 9, 558 extrapulmonary specimens, including urine samples. J Clin Microbiol. 2006;44:4014–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moore DA, Evans CA, Gilman RH, et al. Microscopicobservation drug-susceptibility assay for the diagnosis of TB. N Engl J Med. 2006;355:1539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilson SM, McNerney R, Nye PM, Godfrey-Faussett PD, Stoker NG, Voller A. Progress toward a simplified polymerase chain reaction and its application to diagnosis of tuberculosis. J Clin Microbiol. 1993;31:776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haldar S, Bose M, Chakrabarti P, et al. Improved laboratory diagnosis of tuberculosis e the Indian experience. Tuberculosis. 2011;91:414–26.

    Article  PubMed  Google Scholar 

  69. Centers for Disease Control and Prevention. Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb Mortal Wkly Rep. 2009;58:7–10.

    Google Scholar 

  70. World Health Organization. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system for the diagnosis of pulmonary and extrapulmonary TB in adults and children. WHO/HTM/TB/2013.16. Geneva: World Health Organization; 2013.

    Google Scholar 

  71. Kohli M, Schiller I, Dendukuri N, et al. Xpert_ MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst Rev. 2018;8:CD012768.

    PubMed  Google Scholar 

  72. Opota O, Mazza-Stalder J, Greub G, et al. The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clin Microbiol Infect. 2019;25:1370–6.

    Article  CAS  PubMed  Google Scholar 

  73. Piersimoni C, Gherardi G, Gracciotti N, et al. Comparative evaluation of Xpert MTB/RIF and the new Xpert MTB/RIF ultra with respiratory and extra-pulmonary specimens for tuberculosis case detection in a low incidence setting. J Clin Tuberc Other Mycobact Dis. 2019;15:100094.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rufai SB, Singh S, Singh A, et al. Performance of Xpert MTB/RIF on ascitic fluid samples for detection of abdominal tuberculosis. J Lab Physicians. 2017;9:47–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu R, Lib J, Tan Y, et al. Multicenter evaluation of the acid-fast bacillus smear, mycobacterial culture, Xpert MTB/RIF assay, and adenosine deaminase for the diagnosis of tuberculous peritonitis in China. Int J Infect Dis. 2020;90:119–24.

    Article  CAS  PubMed  Google Scholar 

  76. Tadesse M, Abebe G, Bekele A, et al. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a diagnostic evaluation study. Clin Microbiol Infect. 2019;25:1000–5.

    Article  CAS  PubMed  Google Scholar 

  77. Ahmad R, Changeez M, Khan JS, et al. Diagnostic accuracy of peritoneal fluid gene Xpert in the diagnosis of intestinal tuberculosis, keeping histopathology as the gold standard. Cureus. 2018;10:e3451.

    PubMed  PubMed Central  Google Scholar 

  78. Vadwai V, Boehme C, Nabeta P, et al. Xpert MTB/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis? J Clin Microbiol. 2011;49:2540–5.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ullah I, Javaid A, Masud H, et al. Rapid detection of mycobacterium tuberculosis and rifampicin resistance in extrapulmonary tuberculosis and sputum smear-negative pulmonary suspects using Xpert MTB/RIF. J Med Microbiol. 2017;66:412–8.

    Article  PubMed  Google Scholar 

  80. Sharma V, Soni H, Kumar-M P, Dawra S, Mishra S, Mandavdhare HS, Singh H, Dutta U. Diagnostic accuracy of the Xpert MTB/RIF assay for abdominal tuberculosis: a systematic review and meta-analysis. Expert Rev Anti-Infect Ther. 2020;19:1–13.

    Google Scholar 

  81. Eddabra R, Benhassou HA. Rapid molecular assays for detection oftuberculosis. Pneumonia (Nathan). 2018;10:4.

    Article  Google Scholar 

  82. World Health Organization. WHO meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTF/RIF ultra compared to Xpert MTB/RIF. WHO/HTM/TB/2017.04. Geneva: World Health Organization; 2017.

    Google Scholar 

  83. Gupta S, Kakkar V. Recent technological advancements in tuberculosis diagnostics- a review. Biosens Bioelectron. 2018;115:14–29.

    Article  CAS  PubMed  Google Scholar 

  84. Narayanan S. Molecular epidemiology of tuberculosis. Indian J Med Res. 2004;120:233–47.

    CAS  PubMed  Google Scholar 

  85. Das S, Paramasivan CN, Lowrie DB, et al. IS6110 restriction fragment length polymorphism typing of clinical isolates of mycobacterium tuberculosis from patients with pulmonary tuberculosis in Madras, South India. Tuber Lung Dis. 1995;76:550–4.

    Article  CAS  PubMed  Google Scholar 

  86. Adékambi T, Drancourt M. Dissection of phylogenetic relationships among 19 rapidly growing mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol. 2004;54:2095–105.

    Article  PubMed  Google Scholar 

  87. Roth A, Fischer M, et al. Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol. 2000;38:1094–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bandyopadhyay D, Gupta S, Banerjee S, et al. Adenosine deaminase estimation and multiplex polymerase chain reaction in diagnosis of extra-pulmonary tuberculosis. Int J Tuberc Lung Dis. 2008;12:1203–8.

    CAS  PubMed  Google Scholar 

  89. Yadav SK, Jha NK, Sinha DK, et al. Evaluation of the role of ascitic fluid polymerase chain reaction targeting IS6110 of mycobacterium tuberculosis in the diagnosis of tuberculous intestinal obstruction. Ann Trop Med Public Health. 2015;8:198–201.

    Article  Google Scholar 

  90. Kumar VM, Madhavan R, Narayanan S. Polymerase chain reaction targeting insertion sequence for the diagnosis of extrapulmonary tuberculosis. Indian J Med Res. 2014;139:161–6.

    Google Scholar 

  91. Amin I, Idrees M, Awan Z, et al. PCR could be a method of choice for identification of both pulmonary and extra-pulmonary tuberculosis. BMC Res Notes. 2011;4:332.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Flores JS, Solis AH, Gutierrez AE, et al. Peritoneal tuberculosis: A persistent diagnostic dilemma, use complete diagnostic methods. Rev Med Hosp Gen Méx. 2015;78:55–61.

    Google Scholar 

  93. Uzunkoy A, Harma M, Harma M. Diagnosis of abdominal tuberculosis: experience from 11 cases and review of the literature. World J Gastroenterol. 2004;10:3647–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bloemberg GV, Voit A, Rittera C, et al. Evaluation of Cobas TaqMan MTB for direct detection of the mycobacterium tuberculosis complex in comparison with CobasAmplicor MTB. J Clin Microbiol. 2013;51:2112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mehaffy C, Hess A, Prenni JE, et al. Descriptive proteomic analysis shows protein variability between closely related clinical isolates of mycobacterium tuberculosis. Proteomics. 2010;10:1966–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kunnath-Velayudhan S, Salamon H, Wang HY, et al. Dynamic antibody responses to the mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A. 2010;107:14703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Deenadayalan A, Heaslip D, Rajendiran AA, et al. Immunoproteomic identification of human T cell antigens of mycobacterium tuberculosis that differentiate healthy contacts from tuberculosis patients. Mol Cell Proteomics. 2010;9(3):538–49.

    Article  CAS  PubMed  Google Scholar 

  98. Wadee AA, Boting L, Reddy SG. Antigen capture assay for detection of a 43-kilodalton mycobacterium tuberculosis antigen. J Clin Microbiol. 1990;28:2786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Kapil Dhingra, Dr. Nidhi Sharma.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, G.K., Nijhawan, S. (2022). Ascitic Fluid Testing for Peritoneal Tuberculosis. In: Sharma, V. (eds) Tuberculosis of the Gastrointestinal system. Springer, Singapore. https://doi.org/10.1007/978-981-16-9053-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9053-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9052-5

  • Online ISBN: 978-981-16-9053-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics